
14

XICE Windowing Toolkit: Seamless Display Annexation

RICHARD ARTHUR and DAN R. OLSEN, Jr., Brigham Young University

Users are increasingly nomadic, carrying computing power with them. To gain rich input and output,
users could annex displays and input devices when available, but annexing via VGA cable is insufficient.
This article introduces XICE, which uses wireless networks to connect portable devices to display servers.
Network connections eliminate cables, allow multiple people to share a display, and ease input annexation.
XICE mitigates potentially malicious input, and facilitates comfortable viewing on a variety of displays via
view-independent coordinates. The XICE-distributed graphics model greatly reduces portable device CPU
usage and extends portable device battery life.

Categories and Subject Descriptors: H5.2 [Information Interfaces and Presentation]: User Interfaces—
graphical user interfaces (GUI)

General Terms: Human Factors, Design, Management

Additional Key Words and Phrases: Nomadic interaction, annex screens, security

ACM Reference Format:
Arthur, R., and Olsen, Jr., D. R. 2011. XICE windowing toolkit: Seamless display annexation. ACM Trans.
Comput.-Hum. Interact. 18, 3, Article 14 (July 2011), 46 pages.
DOI = 10.1145/1993060.1993064 http://doi.acm.org/10.1145/1993060.1993064

1. INTRODUCTION

Computing becomes increasingly nomadic as Moore’s law continues to push more com-
puting power into smaller devices. Portable devices now have significant computing
resources and are becoming primary personal computing devices.

The interactive input and output of personal portable devices are limited by their size.
A user could carry around a larger screen, keyboard, and mouse for richer interaction,
but not in a handheld form-factor. Keyboards have shrunk to fit small devices but are
difficult or slow to use. The screens on small devices cannot provide enough visual
output to meet a typical user’s needs, even with a lot of panning and zooming.

A richer nomadic interactive experience would be to carry data and applications in
a personal device, then annex display servers such as screens and input devices when
necessary [Olsen et al. 2001; Paek et al. 2004; Pierce and Mahaney 2004]. Screens are
accessible in many places such as offices, kiosks, home entertainment systems (e.g.
televisions, projectors, etc.), and conference rooms (Figure 1). Users do not need to
carry screens if they can effectively use available screens. Keyboards and mice are
inexpensive, so they too can be readily available for use.

This article discusses the XICE (eXtending Interactive Computing Everywhere—
pronounced “zice”) Windowing Toolkit, which seamlessly distributes the user interface
(UI) of applications to annexed displays and directs input from annexed devices to

Authors’ present addresses: R. Arthur, Neumont University, 10701 South River Front Parkway, Suite 300,
South Jordan, UT 84095, e-mail: startether@startether.com; D. R. Olsen, Jr., Brigham Young University,
Computer Science Department, 3336 TMCB, Provo, UT 84602, e-mail: olsen@cs.byu.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2011 ACM 1073-0516/2011/07-ART14 $10.00

DOI 10.1145/1993060.1993064 http://doi.acm.org/10.1145/1993060.1993064

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 3, Article 14, Publication date: July 2011.

14:2 R. Arthur and D. R. Olsen, Jr.

Fig. 1. Display servers a nomadic user could annex.

Fig. 2. Mobile interaction in a stopped car. All application processing happens within the handheld (high-
lighted).

applications. XICE operates by letting personal devices annex display devices through
wireless networks instead of through direct cable connections like Video Graphics
Array (VGA) and Universal Serial Bus (USB). The user experience becomes much
more flexible when the wireless network is used. This architecture requires one or
more display servers, each of which includes a processor and software to transmit user
input to and show visual output from applications running on a personal device.

In a nomadic environment, users should be able to easily annex screens and input
from display servers. These display servers should have a stable annexing protocol.
Users should also be protected from malicious display servers. In particular, the pro-
tection should address attacks specific to distributing input and output. Software for
nomadic users should require minimal overhead for annexing display servers to max-
imize the personal device’s battery life. Display servers vary according to viewing
distance and screen size, and applications must adapt to these differences. In addition,
multiple people should be able to annex a display server simultaneously.

2. NOMADIC COMPUTING

A nomadic user goes various places and uses a variety of display servers. She may
experience three nomadic situations: personal device alone, annexed screen and input,
and annexed screen alone.

The personal device alone situation involves using the personal device (e.g., a smart-
phone) directly as seen in Figure 2. This setup provides the nomadic user with the

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 3, Article 14, Publication date: July 2011.

XICE Windowing Toolkit: Seamless Display Annexation 14:3

Fig. 3. Desktop interaction. All application processing happens within the handheld (to the right of the
user).

Fig. 4. Collaboration on a large screen. All application processing happens in the handheld.

Fig. 5. Collaboration in a restaurant or a public forum. Multiple people can interact, but personal processing
happens in the handheld.

requisite mobility but poses serious interaction problems with regard to the personal
device’s small form factor.

The annexed screen and input situation is illustrated in Figure 3. When a nomadic
user arrives at her personal workspace, the personal device should annex a mouse, a
keyboard, multiple screens, and other available interactive resources. Though applica-
tions run on the personal device, her interaction with them should feel like she is using
a desktop.

A user may move from her private workspace to a collaborative, company-controlled
space that includes display servers like the wall screen in Figure 4. In this environment,
screens may be larger and farther away and input devices may differ, but all of the
inputs can be fully trusted. Although the environment is different from the personal
workspace setup, this scenario is also an annexed screen and input situation.

The annexed screen only situation applies when annexed input cannot be trusted.
A user may move to a collaborative setting, such as the restaurant or public meeting
in Figure 5. Other institutions control the display servers and input devices. In these
scenarios, the personal device accepts input only from itself so that annexed input
devices cannot be used as attack vectors.

Not only are input threats present in such public situations, but the screen will also
be visible to multiple people. Users may want to annex these screens, but will likely

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 3, Article 14, Publication date: July 2011.

14:4 R. Arthur and D. R. Olsen, Jr.

not want certain pieces of sensitive data (e.g. emails, financial data, file names) to be
shown so publicly. Either people in the room or the display server itself could steal that
data.

In many collaborative situations, multiple people may annex a display server simul-
taneously. Each user may want to interact with his or her applications independently
on the same display (i.e. each person can bring up various single-user applications).
Within these multi-user configurations, each user may choose a different nomadic sit-
uation. For instance, if a display server only has one mouse, then only one user may
annex that mouse’s input (the annexed screen and input situation); other users can
annex the screen (the annexed screen only situation) and opt to use the input on their
personal devices instead. The display server must accommodate these independent
requests.

2.1. Solution Requirements

The nomadic situations have seven important challenges that must be addressed by a
user interface toolkit for nomadic computing.

—Wireless display connectivity and seamless distribution of application output;
—Disparate display resolutions, sizes, and viewing conditions;
—Input acceptance from a variety of sources;
—Avoidance of attack from annexed input devices;
—Privacy sensitivity for application output;
—Myriad software installations;
—Limited battery life and processing power;
—Shared public display space among multiple users.

2.1.1. Wireless Display Connection. Using a cable to physically tie a personal device
to a display is severely limiting. In many situations, including business meetings,
such a setup is infeasible. Besides unnecessarily tethering the user to a particular
display, other problems with using a cable persist. First, large collaborative displays
can easily have more pixels (e.g. 7000 × 2000) than a single VGA or Digital Visual
Interface (DVI) cable can handle. Second, in small handheld form-factors, the size of
the monitor connector itself becomes prohibitive. Third, if a display is located some
distance away from the user (as with a podium and a projector), the user must find the
display’s physical cable, or the display’s owner must make the connector obvious and
useable. Fourth, multiple people cannot use a single display without an awkward and
time-consuming cable exchange. In addition, multiple people cannot show and interact
with information on the display simultaneously. Fifth, with multiple people frequently
connecting and disconnecting, the connector is susceptible to fatigue and failure.

XICE connects to display servers using Wi-Fi and the Internet. This capability pro-
vides a highly flexible software-defined display mechanism that can readily adapt to
a variety of display services. Because XICE uses the network, it can handle large
displays with an arbitrary number of pixels and dimensions, and users are not teth-
ered to a specific location. A network-based protocol also enables multiple personal
devices to simultaneously annex a single display server, and a single personal device
to simultaneously annex multiple display servers.

2.1.2. Varying Displays. Nomadic users will interact with displays of different sizes,
ranging from a smartphone’s screen to large wall displays. Nomadic users also experi-
ence multiple viewing conditions. A personal device’s screen is typically viewed from
about 12 inches. For the display at a workstation, the viewing distance is about 24
inches. Conference room viewing can easily range from 6 to 50 feet. Typical 10-pixel-tall

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 3, Article 14, Publication date: July 2011.

XICE Windowing Toolkit: Seamless Display Annexation 14:5

text on a desktop will look miniscule on a high-resolution wall-sized screen in a confer-
ence room.

In XICE, each display server is configured with the pixels-per-inch resolution and
the normal viewing distance. These two pieces of information describe a new rendering
and input coordinate space called view-independent coordinates (VIC). VIC enables the
application and the toolkit to communicate in terms of user-perceived sizes rather than
physical or pixel dimensions. VIC provides the necessary adaptation to make text and
application UIs readable in each viewing situation. If the user has poor vision, she can
configure her device to automatically scale up the application’s presentation.

2.1.3. Accepting a Display’s Input. An annexed display server may provide input devices,
such as a mouse or a keyboard. The display server offers a full QWERTY keyboard
and a typical mouse for a personal device in the desktop situation (Figure 3). If the
personal device just uses VGA to connect to a screen, the personal device will not be
able to accept input through the same cable; to accept input the personal device must
have another connection port, and the user will have to find and connect that cable as
well. Because XICE uses Wi-Fi, sending input from the display server to the personal
device is straightforward and adaptive.

Applications on a personal device must smoothly and rapidly adjust to each nomadic
situation and to dynamically shift input sources. To facilitate quick and consistent
annexation, the toolkit—not the application—must manage the input bindings. Some
display servers will not have input. Others cannot be trusted, as described in the next
section, and must be protected against.

2.1.4. Protecting Nomadic Users. Annexed display servers may be in places that are
obviously public, such as large conference halls or mall kiosks, but they may also be in
places that seem private, such as hotel rooms. Display servers in all of these locations
may be malicious because their owners are malevolent or because previous users have
infected the servers with malware. When distributing a UI, any combination of four
serious threats can surface: stolen input, false input, stolen output, and false output.

Stealing input or output is an effort to capture the user’s sensitive data. Falsifying
occurs when the display server either alters user data or otherwise coaxes a user into
situations where the display server can steal her sensitive data. XICE takes a large step
toward mitigating these threats by preventing the personal device from accepting input
from a distrusted display server. In such situations, the personal device becomes the
only source of input to applications. To protect the user, the default setting is to always
reject display server input. Using an options dialog on the personal device, the user
can inform her personal device that the annexed input and/or output of a particular
display server is trusted. The UI toolkit (XICE) must explicitly inform applications
when devices are distrusted. Applications must also inform the toolkit about sensitive
input and output so that interaction can be appropriately redirected based on the trust
settings. This cooperative communication about sensitive data and trust does not exist
in current toolkits.

2.1.5. Differing Software Installations. For a nomadic architecture to be widely adopted,
the display services must be standardized. If servers are embedded in screens or smart
keyboards, behavior and protocols must be static. Requiring users to check software
compatibility before annexing a server is unacceptable. Many proposed display annex-
ing solutions do not support a lightweight service.

When a user annexes a display, she wants familiar window management behavior.
To provide consistency, standards for window management need to be developed. Stan-
dards built around human-consumable data types, such as drawings, are more likely

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 3, Article 14, Publication date: July 2011.

14:6 R. Arthur and D. R. Olsen, Jr.

to remain constant than those built around programming environments [Olsen 1999].
The XICE solution is a lightweight service that distributes drawings, not code.

2.1.6. Limited Battery Life and Processing Power. When users operate nomadically, their
personal devices are used to annex display servers using a wireless network. To prop-
erly annex a display server, the personal device’s software must translate rendering
commands for the network and transmit them. In addition, the personal device must
accept similar transmissions containing input from the display server and translate
the commands into input applications accept. The consequent radio and CPU overhead
has the potential to greatly reduce the battery life of the personal device.

Radio power requirements are related to distance and usage. In the illustrated sce-
narios, the distances are short (less than 10 meters), so network latency and radio
power requirements are both low. As this article later demonstrates, a protocol that
distributes scene-graph changes will further reduce bandwidth demands. In addition,
using scene-graphs to push graphics rendering off the personal device onto display
servers sharply reduces CPU demands and consequently reduces battery requirements.

The user could plug their personal device into a power source within a room. Such
an action would obviate the need for low-power consumption. However, this approach
requires that rooms prepare accessible power sources and that users find those sources.
Regardless, the standard for nomadic computing should minimize power consumption
for situations when devices operate on battery power.

Obviously, many other power management issues affect development for and use of
personal devices. This article is concerned solely with the load imposed by the user
interface architecture.

2.1.7. Support Multiple Simultaneous Users. Part of why people are nomadic is for collab-
oration with other people. People need to be able to discuss data while using a shared
display space. A display space must be able to support multiple people showing data on
it at the same time, and it must support independent input for each user. For instance,
with three people at a display space, each user would need an independent pointing
device so that he or she may interact independently with his or her own applications.

3. PRIOR UI DISTRIBUTION TECHNOLOGIES

Wireless connectivity necessitates a protocol for transmitting visual information from
the personal device to a display. Several existing technologies could be used to distribute
a user interface across a network. These solutions fall into three broad categories:
distributing data, distributing code, and distributing graphics.

3.1. Distributing Data

One way to interact with data on an annexed screen is to send that data to the dis-
play server and have an application there interact with that data. This approach is
employed manually via thumb drive in the Dynamo [Izadi et al. 2003] multi-user envi-
ronment and automatically via central server in iRoom [Johanson et al. 2002]. Sending
data to the display server greatly reduces the computing requirements of personal de-
vices by offloading all but the long-term storage requirements. Unfortunately, people
often have custom-produced software they want to use on the displays. Expecting all
display servers to have exactly the same software or equivalent substitute software
is unreasonable. And, any software incompatibilities between the personal device and
the display server disrupt the user experience. To function effectively, display servers
executing application code must have regular software updates and be compatible with
all applications users want to run. This requirement creates a tremendous deployment
burden.

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 3, Article 14, Publication date: July 2011.

XICE Windowing Toolkit: Seamless Display Annexation 14:7

3.2. Distributing Code

Another option is that the user could transfer her custom software to the display server
for execution. Applications could be transmitted in whole (like Equalizer [2008] or
blue-c [Naef et al. 2003]), or in part (like Migratory Applications [Bharat and Cardelli
1997]). This workaround would theoretically allow her to use any display server to
interact with data. However, display servers may have incompatible hardware or op-
erating systems for executing her software. In addition, the display server owner may
not want anonymous users arbitrarily installing software on his display server.

The user’s custom software could be compiled to an intermediate language to be-
come hardware-independent and possibly OS-independent. This is how Flash [Adobe
Systems 1996], Java [Gosling et al. 2000], and Silverlight [Microsoft 2011e] operate.
But, many applications are simply too large to dynamically transmit to the display
server for execution. By comparing installation folder sizes with data file (not video)
sizes for most applications, one can see that typical code consumes significantly more
hard drive space than individual data files. Transmitting all that application code just
to view and edit some data requires a heavy bandwidth load. The excessive startup
time for many Flash and Java applets demonstrates this deficiency, which is why Flash,
Java, and Silverlight applets are typically designed as small, quickly downloadable ap-
plications or are distributed via physical media or long downloads.

Distributing code also introduces major security risks. The display server is given
both user data and the code to process it. A malicious display server could easily infect,
damage, or propagate that data. In addition, if the platform-independent code is not
properly sandboxed, then software transmitted from a client machine could infect the
display server.

Alternatively, an application could send only UI-related code to the display server,
leaving the core of the application on the personal device. NeWS [Gosling et al. 1989]
sends such PostScript [Gosling et al. 1989] commands to the display server. For NeWS
to effectively reduce bandwidth and computing on the personal device, the display
server must be dynamically programmed by the application. This dynamic program-
ming reintroduces the distributed code problems that enable the display server to
control the UI and the user’s data. In addition, importing foreign code exposes display
servers to potential infection by malicious clients.

Shipping code, data, or credentials to distrusted devices, and then accepting data
back, does not offer safe interaction. In addition, such approaches are limited by net-
work speeds because of the volume of data transmitted, so interaction may not be
quick.

3.3. Distributing Graphics

Instead of distributing code, data, or credentials and receiving processed data, appli-
cations could distribute graphics to the display server and directly receive user input.
Then, user data and credentials can be safely retained on the personal device. Two ex-
isting methods for distributing UIs to display servers include rendering-based protocols
and web-based protocols.

3.3.1. Rendering-Based Protocols. In a rendering-based protocol, personal devices send
either raw pixels or rendering commands to the display server. Systems such as X-
Windows (X11) [Scheifler and Gettys 1986], PostScript [Gosling et al. 1989], Virtual
Network Computing (VNC) [Richardson et al. 1998], and Remote Desktop Protocol
(RDP) [Tritsch 2003] utilize rendering-based presentation. X11, VNC, and RDP execute
an application on one computer and render it on another. Remote rendering is feasible
as long as compatible, standard server software is installed on the display server. X11,
PostScript, and VNC provide useful architecture examples for nomadic computing and

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 3, Article 14, Publication date: July 2011.

14:8 R. Arthur and D. R. Olsen, Jr.

have been stable standards for some time. These protocols are stable because each is
designed around a simple graphics model.

The core issue with existing graphics distribution technologies is that they assume
the machine running applications has plentiful resources and that the display server
has limited resources—only enough to show pixels and do simple processing. The sit-
uation is actually the reverse for nomadic users—the personal device has limited re-
sources and the display server has much greater resources. These technologies all
assume a single user interacting at the display server but nomadic computing fre-
quently involves multiple users interacting simultaneously. These assumptions gener-
ate challenges for nomadic computing in four areas: bandwidth, CPU power, trust, and
multi-user support.

X-Windows and RDP convert drawing calls into network messages that are sent to
the display server and rendered as pixels. However, as this article shows in Section
5.4, X11 and RDP can generate a high volume of network traffic. A simple scroll
operation, for example, causes the draw commands for an entire window to be resent.
This function not only incurs bandwidth and radio power costs, but also imposes a
large computational burden on the personal device, which executes draw commands to
rerender the presentation for each scroll movement.

On Windows Vista, RDP allows users to connect to Network Projectors [Microsoft
2011d], which are RDP-specific display servers. Users annex Network Projectors which
then becomes an extension of the user’s desktop, where she can use her mouse to drag
windows to the projector. However, the projector can only support a single user, and
RDP imposes a rendering load similar to X11 on the personal device.

3.3.2. Pixel-Based Protocols. VNC copies pixels from the personal device to the display
server. VNC’s pixel-based model is a highly stable protocol because a purely pixel data
structure does not change. But VNC requires much more bandwidth than X11 in many
cases (as will be shown in Section 5.4), and the personal device incurs the rendering
costs. Mechanisms in the VNC protocol mitigate net traffic but impose additional com-
putational burdens on the personal device. Pixel-based solutions like VNC also react
poorly to the varying screen sizes and resolutions encountered in nomadic computing.
If the user annexes a large screen via a smartphone, then copying the pixels from a
smartphone’s screen to the annexed screen is not satisfying. Copying the window from
an off-screen buffer can alleviate this issue, but can consume significant RAM and pro-
cessing resources on the phone, especially when rendering to large display spaces. The
application shown on the shared screen needs to render differently to take advantage
of the added screen space.

X11, VNC, and RDP always accept input from the display server, rendering the per-
sonal device vulnerable to malicious exploitation. X11 and VNC are known for intro-
ducing security holes that must be carefully protected. One such protection mechanism
that was developed to address such vulnerabilities is the “xhosts” command which lim-
its the machines that may initiate connections to an X11 display server. To increase
interactive security, the devices providing application input must be restricted.

X11, VNC, and RDP do not support multiple users simultaneously interacting on the
display space: neither of the situations illustrated in Figure 5 are possible. In particular,
the desired system must support multiple people interacting with the display server,
with each user supplying output and input from their personal devices. If one of these
technologies were chosen, only one user could interact with applications shown on a
display server at any one time, there may only be only one mouse cursor on the display,
and all conflicts must be handled socially.

Some technologies use RDP or a custom RDP-Like protocol, such as WebEx [Cisco
1997], GoToMyPC, GoToMeeting [Citrix 1997] and MaxiVista [Bartels Media 2011].

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 3, Article 14, Publication date: July 2011.

XICE Windowing Toolkit: Seamless Display Annexation 14:9

Fig. 6. Oprea et al. annexing configuration. The personal device brokers the connection between the remote
PC and the display server. The personal device provides pointing input.

These technologies may add some performance enhancements to RDP, but their an-
nexing model is identical to RDP and is insecure because credentials are entered into
foreign machines and the user’s PC is under the complete control of the foreign machine.

There are a number of other technologies that use VNC, some variation thereof, or
a custom protocol that transmits frame buffers, to implement their interactive expe-
riences, including IMPROMPTU [Biehl et al. 2008]—this implementation detail was
discovered via discussion with IMPROMPTU’s authors—LivOlay [Jiang et al. 2008],
WinCuts [Tan et al. 2004], Lacome [Liu 2007], and Reflect [Argue 2007]. These tech-
nologies use VNC because it is a simple, stable, cross-platform protocol, with source
code available for any platform. Unfortunately, because VNC is a passive process sep-
arated from the applications it captures, it limits a window’s size and an application’s
expressiveness. Because VNC renders on the client machine before transmission, the
size of a window and the amount of information shown is limited to the size of the
screen buffer. Annexing a large display server provides no real benefit to users with
small screens on their personal devices. Because VNC is passive, applications cannot
have two windows shown on two separate screens. For example, if a spreadsheet appli-
cation running on a handheld device could participate more fully in the UI transmission
process, then the spreadsheet could show a UI on the handheld which is tuned for that
handheld’s screen while simultaneously showing a much larger, fuller version of the
spreadsheet on an annexed screen. This problem surfaces in reverse with Sharp et al.
[2006]: only a portion of the shared screen can be seen on the personal device, creating
a limited experience.

Oprea et al. [2004] has all the same problems discussed relative to using VNC.
However, it does lead toward a better nomadic interaction model. In this case, some
computing and input is provided by the personal device. The personal device brokers a
connection between a remote computer and the display server, as illustrated in Figure 6,
and then provides text and pointing input to the remote computer. The personal device
provides a soft keyboard and is enhanced with an optical mouse to provide pointing
input. The user retains control over input to his applications. XICE incorporates the
input separation and application control models.

3.3.3. Web-Based Protocols. In a web-based protocol, Hypertext Transfer Protocol
(HTTP) and Hypertext Mark-up Language (HTML) are used for application trans-
mission and presentation. A web server sends an HTML version of application output
to a web browser. The web browser then renders the HTML to the screen. HTML is
an attractive option, because web technologies are so well-known and prevalent. How-
ever, web technologies have several drawbacks, including the following five. First, not
all web browsers render identically. Second, HTML versions 1 through 4 do not have
general drawing capacity while HTML 5 requires JavaScript [Flanagan 2006] to sup-
port generalized drawing. Regardless of support for generalized drawing, HTML does

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 3, Article 14, Publication date: July 2011.

14:10 R. Arthur and D. R. Olsen, Jr.

Fig. 7. Mobile Composition web-based display annexation. The personal device provides temporary creden-
tials the display server uses to connect to a web server.

not handle varying display sizes, resolutions, and viewing distances. Without gener-
alized drawing and support for varying display setups, many interactive techniques
become difficult to implement. Third, JavaScript implementations are not consistent
between browsers. Fourth, JavaScript requires a programmable display and reintro-
duces many of the security problems related to distributing code (see 3.2). AJAX is
becoming more popular as a development technology, but it relies on JavaScript and
frequently distributes user data to the browser for manipulation. Fifth, web technolo-
gies are difficult to program, because they split code across languages to distribute the
UI between the display server and the web server.

Despite the five problems introduced by using HTML, many researchers are explor-
ing how HTML would be used in nomadic environments. Each of these alternatives
creates additional obstacles.

There are two basic approaches to using HTML as a network UI distribution tech-
nique: the web server and personal server models. The web server model is a familiar
paradigm of just logging in to websites via a display server. The personal server model
treats the personal device as a web server, so all applications on that device expose
their UI as HTML, which may be transmitted to a display server for rendering.

3.3.3.1 Web server HTML model. A frequently suggested option would be to simply
use websites for all processing instead of carrying a personal device. To manage per-
sonal data, the user would login to her favorite websites at a display server. In this
situation, the web browser would play the role of a display server and the websites
would be analogous to the personal device. Relying exclusively on the web is colloqui-
ally referred to as “living in the cloud”. The current interaction model for living in the
cloud requires display servers to have an acceptable web browser installed. However,
just using a web browser for personal computing on display servers introduces several
problems. The user must use a browser that is not configured per her preferences (e.g.
the display server may have plug-ins or JavaScript disabled, reducing the user’s pre-
ferred experience), and she must remember all her favorite sites (which she usually just
bookmarks) and usernames and passwords (which are usually stored by the browser).
Most importantly, she would have to provide her credentials and interactive input to a
foreign device, rendering her vulnerable to identity theft [Sharp et al. 2008]. Display
servers would be required to supply input devices which they may not have or which
may not be convenient for the environment.

One approach to dealing with security is Mobile Composition [Sharp et al. 2008]. As
illustrated in Figure 7, the personal device annexes a display server to view specially-
crafted web pages. The web pages may contain special encrypted sections which only
the personal device may decrypt and view. This approach helps protect the user’s data
but requires significant changes to all websites which process sensitive information.

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 3, Article 14, Publication date: July 2011.

XICE Windowing Toolkit: Seamless Display Annexation 14:11

Fig. 8. Personal Server connections. The hand-held personal device supplies web pages to a discovered
display server. It also provides simple scrolling and selection input while the display server provides no
input.

Such an approach requires significant changes to large portions of the Internet and is
likely unworkable.

It is clearly not suitable to rely on display servers having a web browser, the correct
plug-ins, being virus-free, and safe for sensitive input. XICE can provide a more effec-
tive interaction model for living in the cloud by merging the browser with a network UI
distribution framework. If the user’s web browser is implemented in XICE, then she can
always use her favorite browser wherever she is, with her plug-ins, even if the browser
or plug-in is not installed on the display server. This user always has her browser set-
tings available and can safely and securely enter input (particularly credentials) via
her portable device even if she is browsing at a distrusted, public display.

3.3.3.2 Personal server HTML model. Alternatively, the personal device could act as
the web server and produce a UI in HTML for an annexed display server’s web browser.
Handheld devices can easily host a web server, as demonstrated by the Personal Server
[Want et al. 2002], which is illustrated in Figure 8. The handheld Personal Server
wirelessly discovers display servers which are automatically annexed. The Personal
Server transmits web pages to the display server, and provides a jog wheel for scrolling
through links on the page, and two buttons for navigating via selected links. However,
the personal-device-as-web-server design still suffers from the HTML-induced deficits
including insufficiently rich interaction and several other issues.

Furthermore, for nomadic computing to use HTTP, connections must be established
in a direction that is counter to HTTP’s design: currently, a device rendering HTML
may request that HTML from a server, but the web server (i.e., the personal device)
cannot forcibly push that HTML to a device for rendering. Consequently, the display
server must initiate the connection to the personal device to request HTML. As a result,
either the connection happens automatically or manually. If it happens automatically,
as the Personal Server implements, then the user is exposed to significant security
risks because the choice to share information is no longer under the user’s control: it
is under the display server’s control. On the other hand, if the user must establish
the connection manually, then she must physically interact with the display server
to supply it with the personal device’s IP address or URL. This second option creates
confusion for the user because her device’s IP address is different at each location
because that portable device is physically mobile and is likely on a different network
with a different IP address.

In addition, the Personal Server automatically trusts input from the display server,
so the display server could select any pages from the personal device to be shown or
input any data to the personal device. Website developers must proactively work to
protect their applications from malicious input [Howard and LeBlanc 2003], creating a
heavy developer burden. What is preferred is a system that more proactively protects
software from malicious input.

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 3, Article 14, Publication date: July 2011.

14:12 R. Arthur and D. R. Olsen, Jr.

An interesting approach is SessionMagnifier [Yue and Wang 2009] which is a com-
bination of Mobile Composition [Sharp et al. 2008] and Personal Server: the personal
device serves up web pages that have been sanitized for the display server. The saniti-
zation process ensures that input happens on the personal device, and that the display
server only receives URLs that point to the personal device: no cookies, no URLs to
the pages the user is browsing to, etc. Even though this approach still suffers from the
five problems of HTML (especially because SessionMagnifier requires JavaScript to be
enabled), it does approach data sensitivity in an important way: provide applications
with a way to filter out sensitive data. XICE incorporates this sanitation in its privacy
implementation: an application can produce a UI using widgets that automatically
sanitize the output for a distrusted display server.

Although HTML needs some changes to its standards to reduce the five problems,
there are three key observations about the web and nomadic interaction that encour-
age a new, simple rendering standard: distance, styling, and layout. First, the web is
designed for large distances—both in physical distance and in the number of network
hops—between the server and the browser and high latency. But, nomadic interac-
tion has short distances—physical and hops—and low latency. A large reason to have
JavaScript or Applets is to prevent round-trips to the display server, thus reducing la-
tency and increasing interaction time. With short distances and low latency, preventing
round-trips is no longer necessary. Second, CSS is designed to add styling to web pages
so that people in different situations can view the same content differently. However,
with applications that show on a single display space, such styling is not necessary.
Third, the layout problem addressed by CSS can be handled by the “server” (personal
device) instead of the “browser” (display server). With a sufficiently consistent render-
ing framework and low network latency, users can have a richer interaction so these
techniques for dealing with high latency are no longer necessary and complicate the
programming model.

4. THE XICE PROTOCOL

No existing UI distribution technology sufficiently meets nomadic computing needs.
Each system that has some promise is missing several other key pieces. With all of
these issues, the authors decided to build a new framework from scratch. For the
framework to be successful, applications must be re-implemented, but many systems
require applications to be rewritten, such as the iPhone [Apple 2010a] and Android
[Google 2011] platforms.

A new architecture is needed that puts the personal device in control. A user needs
to carry “his world” with him: his data, his applications, his settings, all in his own
way. This architecture needs to expand applications from the tiny screen space on the
personal device to the large space afforded by the screens he encounters. This expansion
needs to take place in the context of being efficient on computational and network
burdens. The framework must also allow multiple people to interact simultaneously in
the same display space. The framework must also address the issues of trust as users
more-frequently interact with foreign devices. For example, the iPhone addresses trust
by locking up everything: each application lives in its own isolated partition. However,
this is a limiting approach to trust so a broader mechanism is needed.

XICE was developed specifically to minimize the overhead of network traffic and
CPU usage while distributing the UI so that smaller devices may be better supported
in nomadic experiences. The theory raised and confirmed in this paper is that a scene-
graph (described in the Section 5) drastically reduces CPU and network loads, which
opens up avenues for smaller devices to present large interfaces on annexed display
servers.

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 3, Article 14, Publication date: July 2011.

XICE Windowing Toolkit: Seamless Display Annexation 14:13

Fig. 9. Handheld spilling: A UI is shown both on a handheld and tabletop computer. The user may interact
directly with data through the handheld, and may scroll via the tabletop.

XICE is intended as an experimental framework to test the integration of several
existing technologies with some newer technologies, as well as to design new interaction
techniques. One such new technique is Handheld Spilling [Olsen et al. 2007] where
a UI from a handheld device is shown on both a table-top screen and a handheld.
As shown in Figure 9, the UI is synchronized between the handheld and tabletop
so that the portion shown on the handheld aligns with the window shown on the
tabletop. The user interacts directly with data via the handheld’s screen and navigates
by scrolling the UI via the table-top (often with her nondominant hand). The handheld
presents a spatially limited interaction area, but the tabletop may be an untrustworthy
device. Spilling is beneficial because the user can see more information via the tabletop
while the user’s software is protected from potentially malicious input by interpreting
all incoming input as panning motions rather than input that could alter user’s data
(potentially injecting malicious data). Another new technique is the MousePuter, which
is described in 6.2.1.2.

There are two large facets to XICE’s implementation: the underlying protocol that
communicates between a personal device and a display server, and the windowing
toolkit that performs window management and supplies common UI components such
as window decorations, buttons, labels, text boxes, and system-supplied dialogs. Al-
though several examples and figures within this article discuss aspects of the window-
ing toolkit, this article focuses on the underlying protocol. The windowing toolkit is not
as important as the protocol: the protocol has stayed fairly stable across experiments
while the look and feel of the toolkit has changed, sometimes drastically. Consequently,
this article evaluates the protocol, not the look and feel.

Concentrating on the protocol elucidates the goal of integrating a wide variety of
devices into the nomadic experience. Expecting all devices to conform to a new win-
dowing toolkit is unreasonable: each device’s toolkit has its own strengths that its users
prefer. But, expecting a large subset of devices to be able to support a simple protocol
is reasonable, especially because so many devices support networking protocols such
as HTTP and HTML.

The XICE protocol has two major pieces which provide a rich and safe nomadic
experience: the graphics engine and the input framework. The graphics engine provides
a large decrease in network usage when distributing a UI. The input framework adds
safety via input redirection: the personal device can supply all input to windows the
user shares on annexed displays instead of accepting input from the annexed display’s
input hardware. A detailed discussion of the graphics engine is in Section 5, and the
input framework is discussed in Section 6.

The XICE protocol is implemented in Java 6. Java was chosen primarily because
garbage collected platforms facilitate rapid software development, but Java was also

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 3, Article 14, Publication date: July 2011.

14:14 R. Arthur and D. R. Olsen, Jr.

chosen because of its cross-platform abilities. In addition, version 6 brings developer
tools such as annotations and generics (from version 5) and tighter integration with a
platform’s UI-toolkit (e.g., window transparency).

Although the protocol is currently implemented in Java, the protocol is designed to
be implemented by other languages on other platform. The public interface exposed by
the UI transmission protocol is platform independent. To demonstrate this, XICE has
also been implemented in C# [Microsoft 2000].

5. RENDERING IMPLEMENTATION

The following specific principles guided development of the graphics engine within
XICE. First, graphical presentations should be simpler to program than the tradi-
tional damage-repaint cycle, reducing development time for an application. Next, the
rendering system should be seamless across devices, so developers need not consider
whether a window is rendered on the personal device or on an annexed screen. Third,
the UI should scale to be easily readable regardless of the display’s pixels per inch
(PPI) resolution and the user’s viewing distance, and the developer should not need
to consider either of these. Finally, the rendering system should handle large screens
containing numerous pixels, but only incur a minimal load on the personal device. The
scene-graph architecture was selected for its superior ability to meet these criteria.

5.1. Automatic Rendering

At the core of XICE is the scene-graph or presentation tree. (Those familiar with scene-
graphs may skip ahead to Section 5.2.) The presentation tree is modeled after technolo-
gies such as Graphical Kernel System (GKS [ANSI 1984]), Programmer’s Hierarchical
Interactive Graphics System (PHIGS) [Shuey et al. 1986], Jazz and Piccolo [Bederson
et al. 2004], and Windows Presentation Foundation (WPF) [Petzold 2006]. In these
technologies, an application builds a graph of draw commands that the toolkit renders
onto a display. Scene-graphs are basically display lists structured in graph format.
Scene-graphs were first developed with GKS and PHIGS to render 2D and 3D scenes
across a network. HTML—especially when represented as a Document Object Model
within a browser—is a more popular, but less consistent, scene-graph.

With the scene-graphs in WPF, Jazz, and Piccolo, interactive widgets—such as but-
tons or text boxes—are embedded in the scene-graph. These widgets may contain other
widgets as part of the graph, and may supply rendering primitives. So, for these tech-
nologies, the scene-graph provides structure for rendering, widget containment, and
input dispatching. XICE also follows this approach.

Traditionally widgets are rendered using the damage-repaint cycle. Each widget
possesses a widget model, produces visual output, handles input, and raises events.
For example, a button widget would have Boolean variables to track its enabled and up
states and a string variable for the label. To change its visual output, the widget must
inform the windowing toolkit (damage), and after all immediate events that might
affect the widget’s visual output have been processed, the windowing toolkit sends
a redraw (repaint) event to the button. Continuing our button example, as a mouse
down occurs on the button, the button changes to the down state and then executes the
damage-repaint cycle. Next, when a mouse up is received, the button changes back to
the up state, raises a “clicked” event, and executes the damage-repaint cycle again.

A significant benefit of scene-graphs is that the toolkit automatically renders pix-
els from the instructions in the graph, and changes to the graph are automatically
rerendered. Figure 10 illustrates a scene-graph and the output that is rendered from
it. When the scene-graph is altered—in this case, by changing the circle’s fill color to
yellow—the rendering engine tracks those changes and rerenders the altered portions
of the UI.

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 3, Article 14, Publication date: July 2011.

XICE Windowing Toolkit: Seamless Display Annexation 14:15

Fig. 10. Scene-graph rendering: (a) shows the original graph, while (b) shows how changing the circle’s fill
color to yellow causes notifications to travel up the graph and affects the rendered output.

By automatically rerendering the UI’s scene-graph changes, code can be minimized,
and end developers can be removed from the damage-repaint cycle. Rather than recre-
ating the UI through draw calls each time the paint portion of the cycle happens,
developers can create the UI once with the presentation tree, and then update the
tree with changes. Piccolo allows developers to perform custom rendering, improv-
ing performance in some places; but, custom rendering using Piccolo necessitates the
damage-repaint cycle. On the other hand, Jazz removes the damage-repaint cycle, sim-
plifying rendering for developers. XICE does what Jazz does: applications maintain a
tree of draw commands instead of calling rendering methods.

The presentation tree represents draw commands—such as draw a line, draw a
rectangle, or draw an ellipse—as nodes within the tree. Leaf nodes represent drawing
primitives, while interior nodes can apply simple effects to those drawing primitives.
For instance, the Transformer node applies an affine transform to all child nodes and
the Clipper node clips the rendering of its child nodes. Interior nodes can show or hide
their children. Nested interior nodes accumulate their effects. For example, embedding
a Transformer node with a rotate transform inside a Transformer node with a scale
transform causes all leaf nodes within the inner Transformer node to be both scaled
and rotated. Embedding a Clipper node inside a Clipper node causes the clipping effects
to be accumulated on the child nodes of the inner Clipper node.

The XICE rendering frameworks supports the graphical primitives supplied by the
Java Graphics2D object. These primitives include lines, rectangles, ellipses, curves,
gradients (linear and radial), images, audio and text. In addition to clipping and trans-
forming, XICE supports transparency. XICE does not support video, but that is because
the Java Media Framework (JMF) [Oracle 2011b] does not support video well. If the
rendering engine were implemented in WPF, it would easily support video.

Transforming and clipping support not only scrolling, but also rotated windows in
DiamondSpin [Shen et al. 2004] and skewed windows in Metisse [Chapuis and Roussel
2005]. XICE does not support the extended zooming architecture of Pad [Perlin and
Fox 1993], Jazz, or Piccolo.

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 3, Article 14, Publication date: July 2011.

14:16 R. Arthur and D. R. Olsen, Jr.

5.2. Seamless UI Distribution

Seamless UI propagation to an annexed display server is critical to a simple nomadic
architecture. Scene-graphs within XICE are seamlessly propagated over a network
without involving the application. When the presentation tree is rendered on an an-
nexed display the entire tree is serialized to the display server, and the display server
maintains a copy of that tree. As the application changes nodes within the presentation
tree on the personal device, the altered portions of the tree are serialized to the display
server, and the display server’s copy of the tree is updated.

To accomplish this seamless UI distribution, the serialization protocol has four key
aspects: primitives, messages, graph nodes, and widgets.

5.2.1. Serialization Primitives. XICE uses a standard TCP/IP connection to transmit data
between a client and a display server. The protocol for serializing and transmitting that
data is simple and easily implemented in other languages and frameworks. A display
server was built in C# and easily processes such data.

Within XICE there are seven different serializable primitives: integer, double, byte-
array, string, start, end, and message. Integer, double, byte-array, and string use stan-
dard high-byte first or UTF encodings to transmit the data. Start, end, and message
are XICE-specific identifiers.

Before transmitting any primitive, a single-character prefix is transmitted as a 2-
byte encoding. Then the data follows that prefix. In the case of the byte-array, the
length of the byte array follows the prefix as an integer before the contents of the
byte array are transmitted. In the Java implementation, all values are transmitted
using functions on the DataOutputStream [Oracle 2011a] object. A C# decoder was a
straightforward, simple implementation.

5.2.2. XICE Messages. The primitives are available so that messages may be easily
transmitted between machines. When writing out a message, XICE first writes out the
identifier for the “message” primitive. Then, the message contents follow as a sequence
of primitives.

XICE messages are predefined for the framework and are not expected to be created
by end developers. Message objects are designed with both a serialize and a deserialize
method, and the framework developers kept the two methods coordinated such that
each primitive written has a matching read.

5.2.3. Graph Nodes. Most messages have a fixed number of properties, so coordinating
the serialize and deserialize methods is a matter of reading in data in the exact same
sequence and type it was written out in. However, graph nodes may contain an arbitrary
number of properties of arbitrary types and an arbitrary number of children.

The properties and children are written out as two separate groups. The serialization
mechanism uses the start and end primitives to track the beginning and end of the
groups of properties and the groups of children, similarly to how Java, C, and C#
developers use curly braces to delimit a group of code.

The scene-graph nodes are transmitted at specific times relative to user interaction.
The entire scene-graph is transmitted the first time that presentation tree must be
rendered by a display server. After that initial transmission, changes to the scene-
graph are transmitted in batches.

To transmit changes in batches XICE integrates with the application’s event dis-
patching loop. Every time the event queue is emptied (i.e., all the pending events are
processed by the application) XICE inspects each scene-graph for changes. If a scene-
graph has changed then those changes are collated into a single message which is
transmitted to the display server.

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 3, Article 14, Publication date: July 2011.

XICE Windowing Toolkit: Seamless Display Annexation 14:17

Fig. 11. Type hierarchy of the XICE-supplied Button class. The gray boxes are the widgets types that a
client and server are both aware of.

After the changes are collated and transmitted, XICE clears the presentation tree of
all change tracking flags.

5.2.4. Serializing Widgets. In XICE, as with Piccolo, interactive widgets are imple-
mented as subclasses of interior nodes in the presentation tree. Embedding widgets
within the scene-graph merges the geometry of presentation rendering with the geom-
etry of input handling.

XICE offers nothing novel with regard to the basics of the serialization mechanism,
so a description of that process is omitted from this paper. However, because widgets
are embedded within the tree the widget serialization process needs to be detailed.

Standard serialization techniques (e.g., Java and .NET [Microsoft 2011c] serializa-
tion) require the same class structure to exist on both the sending and receiving ends
of serialization. In addition, all private fields of a class are serialized. But, the private
fields of interactive widgets can contain sensitive data (e.g. email addresses, user-
names, or the password a user enters into the password box) that should not be sent to
a display server. The display server renders widget output, but does not execute widget
code, so serializing the entire widget is inefficient. Developers may also create novel
widgets unknown to the display server, which necessitates shipping novel class struc-
tures to the display server before serializing the widget. To minimize security risks
and to simplify the architecture, display server implementations should not adapt to
class structures of new applications.

The XICE serialization protocol minimizes risk by transmitting display serialized
nodes: a safe subset of presentation node classes that both the personal device and
display server understand. When serializing a widget, its type hierarchy is searched
until a display serialized node is found. Then, the properties from that node are seri-
alized to the display server. Consequently, a display server can support the graphical
output of any widget without receiving its class definition, and the widget’s private
data will not be automatically transmitted to the display server. Consider the simpli-
fied type hierarchy of the Button widget shown in Figure 11. The gray boxes represent
types within that hierarchy that are display serialized nodes. When the serialization
mechanism encounters the Button in a scene-graph, it first looks to see if Button is
a display serialized node. Because Button is not display serialized, the parent type,
Controller, is inspected. It also is not display serialized. However, ResizableContainer
is, so the display server is informed of the presence of a ResizableContainer, and all
the properties from the ResizableContainer type are serialized to the server.

Notice that even though the XICE windowing toolkit provides the Button type, the
ResizableContainer is the type actually transmitted to the display server. The Button

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 3, Article 14, Publication date: July 2011.

14:18 R. Arthur and D. R. Olsen, Jr.

Fig. 12. VIC configuration program. A display server’s owner uses this program to configure the display
server for typical viewing by iteratively selecting the ideal text size for viewers.

type also performs no rendering on its own: it has child nodes which represents all
the graphical elements that represent the output of that button. After serializing the
ResizableContainer type, all the child nodes from the Button are also serialized. Conse-
quently, the Button renders identically on the display server. From the display server’s
perspective the Button appears simply as a ResizableContainer (which is a container
with Bounds) with several rendering primitive nodes as children, but none of the but-
ton functionality. Not transmitting the Button type is an intentional design decision
which keeps the XICE protocol simple, and allows the protocol to be implemented in
other languages and on other platforms.

5.3. View Independent Coordinates

Nomadic users will encounter different display and viewing situations. Regardless of
the situation, information the user shows on an annexed display must adapt to the
display’s size, resolution, and position, and produce a readable, interactive interface.

XICE solves the screen adaptation problem by having all applications use view
independent coordinates (VIC). Pixels per inch (PPI) have no real perceptual meaning.
Instead of PPI, visual perception is defined in degrees of visual arc (DVA). For projectors,
PPI, zoom lens, and viewing distance must all be taken into account.

Employment of VIC is not merely an adaptation to the resolution of a display. VIC
is determined by what the user sees rather than just what the hardware can show.
10 VIC is defined as the size of normal, comfortably read text. When viewed from 24
inches, a 10-point font (which is 0.1 inches high) is comfortable to read for most people.
This font viewed at this distance is approximately 0.3 DVA. So, 10 VIC equals 0.3 DVA.
This model is simple for programmers to understand because 10 VIC is conceptually
similar to 10-point font. Originally, distances in XICE were defined using DVA, but
programmers were confused about how large 1 DVA would be, so they guessed. The
VIC system is much easier to explain and to use effectively.

People annexing the display server do not need to configure it. Every XICE display
server has the VIC configuration program shown in Figure 12.

An owner runs the VIC configuration program once to configure the display server
for use. This program shows text of various sizes on the display and asks the owner to
pick the smallest text he can comfortably read from a typical viewing distance. As the
owner chooses text, a different set of text with sizes near the selected text are shown.
The owner iteratively picks text until he likes the selected size. The program then
calculates the appropriate VIC for the display based on the chosen text.

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 3, Article 14, Publication date: July 2011.

XICE Windowing Toolkit: Seamless Display Annexation 14:19

Instead of picking a comfortable font size using the VIC configuration program,
the display server owner could rely on the VIC measurement program to calculate
a reasonable estimate. The application displays a 200-pixel by 200-pixel square. The
owner is asked to measure and enter the width W and the height H of the square on
the screen, and the user’s typical viewing distance D. The units of measurement are
unimportant as long as the same units are used for all three values. In places like
conference halls, viewers are located at different viewing distances, so a judgment call
must be made regarding the appropriate view distance for common uses of the display.
Given W, H, and D, and the fact that 10 VIC is 0.3 DVA, the program can compute
scale factors for X and Y.

sx = 0.3
10 × tan(1) × D × 200

W ,

sy = 0.3
10 × tan(1) × D × 200

H .

Two separate scale factors are used, because displays do not always use square pixels.
When a user connects to a display server, his personal device is informed of the display

dimensions in VIC. The toolkit software on personal device then knows the bounds of
the screen. Applications can use this toolkit information to adapt themselves to the
available display space. XICE does not address the UI adaptation problem [Nichols
2006]; XICE merely informs the application of what the visual parameters are. The
application can then adapt using any algorithms or techniques developers may choose.

In some situations, the viewing distance could depend on the distance the user is
connecting from. For instance, a user at one end of the room may want to interact
directly with the screen, while another user may want to interact with his data from
a distance. The two viewing distances could be configured dynamically. Tools that can
measure distance such as the Wii [Nintendo 2011] or the Kinect [Microsoft 2011a]
could easily measure user distance and configure the VIC automatically. How to best
approach this is left as an area for future research.

5.4. CPU/Network Load Evaluation

A major issue with distributing the UI from a personal device to a display server is the
battery drain. Battery drain comes primarily from the backlight, CPU, and the radio.
An interactive architecture can affect the CPU load and the radio, but not the backlight.
The process of generating and transmitting a UI to a different machine influences the
CPU and radio usage. Although a user could potentially plug their device into a wall
outlet (or other power source) to gain the requisite processing power, such an approach
then tethers the user to a limited range of motion. An ideal approach would be to
operate for longer periods of time exclusively on batter power. A rendering engine that
minimizes both CPU and radio usage will help extend battery life when annexing a
display server. This paper contends that the average interactive application spends the
majority of its CPU cycles rendering pixels and that using a scene-graph can greatly
reduce processing time and network usage by offloading pixel rendering to another
device, especially when compared to other network UI distribution technologies such
as X11, RDP, and VNC.

Consider a word processor displayed in a 600- by 400-pixel window. Typing the letter
“y” will cost at most 10,000 instructions to make room in the document and insert
the letter “y”. If the “y” is placed in the middle of the document, half of the pixels
in the window may need to be repainted for word wrapping and new lines. Suppose
each pixel takes a minimum of 12 instructions to render for a total of 1.44 million
instructions to repaint half the window. Less than 1% of the CPU cost is in actual
document modification.

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 3, Article 14, Publication date: July 2011.

14:20 R. Arthur and D. R. Olsen, Jr.

Now consider a 10-column by 30-row spreadsheet displayed in the same 600 × 400
window. If a change in one cell causes all other cells to be recalculated at a cost of 100
instructions per cell, a total of 30,000 instructions must be processed for that one cell’s
value change. With 2.88 million instructions necessary to repaint the entire window,
the cell recalculations amount to approximately 1% of the cost of repainting the window.

These two simple examples show that in modern graphical applications, the CPU
cost of updating the application’s model is far overshadowed by the cost of painting
pixels. In the examples, only 600 × 400 windows were used. If the personal device
distributes these windows’ pixels via VNC or VGA, rendering on the personal device
may be reasonable. However, with wall-sized displays, the personal device may manage
several million pixels, greatly increasing the personal device’s effort to calculate pixel
values.

XICE addresses the multi-million-pixel rendering problem by imposing only presen-
tation tree manipulations on an application rather than constantly rendering UIs on
the personal device. Experiments were conducted to validate the advantage of XICE’s
distributed scene-graph architecture. The tests compare the UI distribution techniques
of TightVNC [TightVNC 2011] (Tight), RealVNC [RealVNC 2011] (Real), RDP, and
XICE on Windows XP, and X11, the system-supplied VNC, and XICE on Linux. With
each UI distribution technique, the tool was distribution technique was installed and
used as-is. In the case of TightVNC, it was used with the “high-bandwidth” option
selected.

XICE, X11, and RDP each render only on the display server, while all versions of VNC
render on both the client machine and the display server. One may wonder why XICE
should be compared to VNC because the fundamental difference in rendering styles.
VNC was chosen because the render-locally-and-transmit-frame-buffers approach is
used by several potentially nomadic environments such as IMPROMPTU [Biehl et al.
2008], LivOlay [Jiang et al. 2005], WinCuts [Tan et al. 2004], Lacome [Liu 2007], and
Reflect [Argue 2007].

For all experiments, the personal device and display server are each a 3.4-GHz,
hyper-threaded Intel Pentium 4 processor with 1 GB of RAM. The network is a single
gigabit Ethernet switch. For all windows experiments, Windows XP SP3 is used, with
all updates current to December 15, 2010. For all Linux experiments, Ubuntu 10.10
[Canonical 2011] is the operating system used, with all updates similarly current. In
both cases, the Sun-supplied JRE is used: the OpenJDK [Oracle 2011c] supplied with
Ubuntu did not perform as well when rendering. Data was collected using the log-
man [Microsoft 2011b] tool in Windows and nmon [IBM <cmr rid="cm1" label="IBM">
[RBA1]</cmr><cmt id="cm1">Should this be an acronym or the full spelled-out com-
pany name? 2011] in Ubuntu. In all tests, the application that produces the UI is a
XICE application. The application is started, after a few seconds the monitoring tool is
started and allowed to run for 4 minutes, collecting samples once every second. Then
the first 15 seconds and last 15 seconds are discarded and the averages collated.

In the first experiment—the small rotation task—a spreadsheet is displayed in a
small 50 × 50 window. Every 100 milliseconds, a separate thread rotates that window
back and forth by 1.2 degrees, testing transformation with few overall drawing updates.
Results are compared in Figure 13.

The None column shows the percent of total processing power the personal device
uses to execute without distributing the UI. The client row shows the percent CPU
usage on the client device while the Display row shows the percent CPU usage on
the display server. The values in the Display row are not consequential, because the
display server can be expected to have the resources necessary to process rendering
commands. Processor usage includes the application, the UI distribution technology,
and the operating system. The Bytes/s row shows the number of bytes transmitted per

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 3, Article 14, Publication date: July 2011.

XICE Windowing Toolkit: Seamless Display Annexation 14:21

Fig. 13. Performance on a small rotation task.

Fig. 14. Performance on a large rotation task.

second on the LAN while Pack/s shows the number of packets transmitted per second.
Network usage is important, because radio transmissions can consume considerable
power. Decreasing network traffic helps minimize radio utilization.

The most salient result in Figure 13 is that the CPU usage drops for both Windows
and Linux, although Linux drops 3.94% to 0.29% when using XICE. That decrease
translates to a 92.6% drop in processor usage on the personal device and includes
the time required to serialize the presentation tree. By contrast, all other distribution
techniques increased processor usage, and in the case of RealVNC, by 29 fold. And
the network usage—of secondary import for preserving battery life—shows that XICE
performs worse in half of the cases. However, it performs much better than VNC or
X11 on Linux, and performs a little better than RealVNC on Windows.

In the second experiment—the large rotation task—the same rotations are performed
with a 600 × 400 pixel window. Nearly 100 times as many pixels are rendered. The
results of this experiment are shown in Figure 14. On the personal device, XICE drops
CPU usage from about 50% to less than 0.5% (a 99% drop), while RDP does not drop
usage at all. In terms of network usage on this second task, XICE greatly outperforms
the other options in both Bytes per second and packets per second. In fact, network
usage stays roughly the same as the small rotate task.

For the final experiment—the scrolling task—a separate thread scrolls a spreadsheet
vertically one movement every 100 milliseconds. The spreadsheet is presented in a

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 3, Article 14, Publication date: July 2011.

14:22 R. Arthur and D. R. Olsen, Jr.

Fig. 15. Performance on a scrolling task.

Fig. 16. Interactive leg performance.

600 × 400 pixel window. While the prior two tasks are designed to force the UI to
completely repaint, this last task more closely matches the common user technique of
scrolling a window. The act of scrolling within the application causes many pixels to be
rerendered without changing all pixels.

The results of the scrolling task experiment are shown in Figure 15. XICE drops
processor usage from 25% to 0.44% (a 98% drop), while X11 can only reduce usage from
36% to 17% (a 53% drop). All other distribution techniques increase the client’s CPU
usage. In terms of network usage, XICE significantly outperforms the other options.

A major complaint about distributed interaction is the lag imposed by the distribution
mechanism. To address this issue, the interactive response of the various distribution
techniques is rated according to the following human observation of the interactive
behavior of the application.

Excellent—no noticeable lag: less than 0.1 seconds
Good—slightly noticeable lag: between 0.1 and 0.25 seconds
Fair—noticeable lag: between 0.25 seconds and 1 second
Poor—excessive lag: more than 1 second

The times presented are a rough estimate of the lag between when a change is
performed on the client machine and how long it takes before that change is rendered on
the display server. Figure 16 lists the overall performance of each distribution technique
relative to each task. Surprisingly, Ubuntu’s version of VNC performed excellently for
all three tests. However, that performance came at a large CPU and network cost.
In terms of interactive responsiveness, XICE clearly performed better than any other
technology examined.

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 3, Article 14, Publication date: July 2011.

XICE Windowing Toolkit: Seamless Display Annexation 14:23

The implementation of the Java Graphics rendering pipeline on Windows may affect
these results. RDP intercepts Windows Graphics Device Interface (GDI) [Yuan 2000]
calls and forwards them to the rendering display. However, Java Graphics2D uses Di-
rectDraw [Yuan 2000] and not GDI. DirectDraw is meant for high-performance gaming
with rapidly changing UIs, while GDI is meant for applications in which the UI does
not change as frequently. Consequently, RDP does not receive notifications of each draw
call within DirectDraw. Instead, RDP periodically sends the DirectDraw frame buffer
to the display server. For Java applications, RDP pushes frame buffers just like VNC
does, so RDPs true performance characteristics may not be reflected in the collected
data. RDP would be expected to perform closer to X-Windows’ characteristics.

X-Windows provides a more accurate representation of a competitive distributed UI
technology, because X11 intercepts Java rendering calls and forwards them to the dis-
play server. The comparison between X11 and XICE is a better indicator of XICE’s
performance against a tightly integrated UI distribution technology. Even X11, how-
ever, could only achieve a 65% reduction in processor usage (48% to 17%), compared
with XICE’s 99% reduction. And, X11 imposes a gigantic network load—one to two
thousand times what XICE uses during the same task. Even though the network pro-
tocol for XICE is not optimized for highly efficient binary throughput, it still yields a
huge performance boost with minimal effort.

In the two larger experiments, using XICE greatly reduces both CPU load and net-
work usage, while the smaller experiment shows that XICE performs a little worse.
However, XICE’s interactive experience excels for all experiments. Combining both the
interactive experience and the observation that XICE’s client-side network and CPU
loads stay constant for all three distributed tests, shows XICE to clearly be preferable.
The scene-graph architecture greatly reduces processing time, and can greatly reduce
network time as well. Nomadic computing with XICE’s incremental update of scene-
graphs extends battery life and helps ensure that personal devices can handle the
required computation and rendering loads on large shared displays while providing a
responsive user experience.

6. INPUT IN NOMADIC SITUATIONS

Users must be able to provide both text and pointing input to applications regardless of
which of the three nomadic situations applies. The applications must be able to operate
without considering the input’s source or if that source changes. XICE’s scene-graph
architecture simplifies input dispatching, compared to input handling in the damage-
repaint cycle, and allows applications to operate regardless of the nomadic situation.

6.1. Input Handling

In each nomadic situation, users provide input to interact with a widget. Traditionally,
input is handled by widgets that use the damage-repaint cycle, and presentation geom-
etry is created in the repaint method. To select an object, pointing input is hit-tested
against the object’s presentation geometry. If a geometric transformation is applied to
an object’s presentation, the inverse of that transformation must be applied to prop-
erly hit-test the object. Hit-testing in traditional architectures frequently requires the
widget to reproduce the presentation geometry. Applying a transform in the repaint
method, for example, necessitates calculating and inserting the inverse transform into
hit-testing code. Nested geometric transformations further complicate this process.

In scene-graph architectures, the presentation geometry, including affine transforms,
is stored in the scene-graph. In architectures like XICE, Piccolo, Jazz, and WPF, input is
dispatched top-down through the scene-graph. For example, Figure 17 shows pointing
input dispatched to the “Yes” button, represented by the left red ellipse in the tree.

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 3, Article 14, Publication date: July 2011.

14:24 R. Arthur and D. R. Olsen, Jr.

Fig. 17. Dispatching input within a scene-graph. The mouse click starts at the tree root and passes through
each node down the tree until it arrives at the button widget. The button widget hit-tests the click against
the rectangle’s bounds.

The button widget performs a hit-test against the button’s background rectangle to
determine if the input is within the rectangle’s bounds.

When using a scene-graph, developers create the tree once, and any transforms that
need to be applied are embedded within the tree. As pointing input passes through a
Transformer node, that input is transformed according to the transform at that node.
Nested transformations result in nested transforms of the input. By transforming the
pointing input at each Transformer node, the input is in the proper form for each node’s
coordinate space, removing input handling complications from the damage-repaint
cycle. Developers can hit-test the existing tree instead of recreating the presentation
geometry and remembering to properly apply inverse transforms to input.

Keyboard input is not affected by affine transforms and is therefore dispatched using
standard text dispatching mechanisms.

6.2. Input In Nomadic Situations

In nomadic situations, different devices can supply user input to local or remote win-
dows. Local windows are pieces of software on the personal device that send their UIs
to the personal device’s screen. Remote windows are pieces of software on the personal
device that send their UI’s to a proxy window on an annexed device’s screen. In the per-
sonal device alone situation (Figure 2), local windows receive input from the personal
device’s input hardware. In the annexed screen and input situation (Figure 3), remote
windows receive input from annexed devices. And, in the annexed screen only situation
(Figure 5), remote windows receive input from the personal device. When supplying
input, users need to be able to smoothly transition among nomadic situations.

If the user is in the personal device alone situation, no transitioning is necessary,
because all interaction occurs on personal device. If she is in the annexed screen and in-
put situation, remote windows receive input from the annexed input devices. Suddenly,
an intimate note from her spouse arrives on her personal device. When the message
arrives, she transitions by physically using her personal device instead of the annexed
input devices.

The annexed screen only situation, however, requires special consideration for redi-
recting input. A user in the annexed screen only situation interacts with applications
shown on an annexed screen. Her personal device supplies pointing and text input.
Pointing input is supplied by translating input on the personal device into mouse
clicks and cursor movements reflected on the annexed screen. Text is entered through
a soft keyboard on her personal device. When a potentially embarrassing note arrives
from her spouse, the note is shown on the personal display where she can view it
discreetly (Figure 18). If she ignores the message, personal device input continues to

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 3, Article 14, Publication date: July 2011.

XICE Windowing Toolkit: Seamless Display Annexation 14:25

Fig. 18. A user may supply input on her personal device for a document in a remote window. If a message
arrives on her personal device, she must be able to smoothly transition to supply input for the local window.

be sent to remote windows. However, if she elects to write a reply, input should be
redirected to local windows. She must be able to smoothly transition between local and
remote windows while using only the personal device for pointing and text input.

6.2.1. Pointing Input. The user should not need to look at the personal device to supply
pointing input for remote windows. On the personal device, the UI for entering pointing
input should not provide mechanisms whereby the user can inadvertently switch from
remote to local windows. When she is focused on the display server’s UI, looking back at
the personal device to ensure she is providing input to the correct windows can annoy
her and distract her from accomplishing her tasks.

Existing personal devices are designed to only provide pointing input for local win-
dows. When annexing display servers, that input must be redirected to remote win-
dows. As annexing becomes more prevalent, personal devices may supply a second
input source dedicated to remote windows. In the meantime, existing devices need to
provide pointing input to remote windows.

6.2.1.1 Redirected pointing input. Each personal device needs a device-specific way
to redirect pointing input to remote windows. Personal devices that accept stylus inter-
action would require interactive techniques like those used in Pebbles [Myers 2001].
Personal devices that have other sources of pointing input (e.g., touchpad, mouse, arrow
keys, or fingers) would need device-specific solutions for redirecting their input.

One way to redirect input to remote windows is to show a dialog that receives all input
and then redirects that input, similar to Pebbles. For instance, on a laptop with only
touchpad input, a small dialog could capture cursor movements and translate them
into remote cursor movements. After each cursor move, the cursor would be recentered
in the dialog so that remote cursor movement is not constrained by the bounds of the
laptop screen.

Another way to share input between a personal device and a display server is to
treat the personal device and display server as a unified display space. For instance,
Synergy [2011], MaxiVista [Bartels Media 2011], iRoom [Johanson 2002], and many
other toolkits allow the user to slide the mouse off of one screen onto another screen.
Related is the approach of Mouse Ether [Baudisch et al. 2004] which allows the mouse
cursor to travel in the space between monitors so that the mouse does not jarringly jump
to a destination monitor. However, such approaches may allow a window to overlap
screens from two separate devices which may interfere with the privacy features that
will be discussed in section 8.

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 3, Article 14, Publication date: July 2011.

14:26 R. Arthur and D. R. Olsen, Jr.

Fig. 19. A full-screen window can redirect stylus input as mouse input (left). A message may arrive at any
time and inadvertently interrupt stylus input.

To capture stylus input from the personal device without shifting attention from the
annexed screen requires a full-screen dialog on the personal device. A simple example
of this dialog is shown on the left of Figure 19. If the dialog is not full-screen, the user
may unintentionally tap widgets external to that dialog.

Suppose a message—like the one on the right of Figure 19—arrives while the user
is looking at the annexed screen. If she accidentally taps within the message, she
may respond to or ignore the message without realizing. She needs to be notified of
the message without closing the capturing dialog or inadvertently interrupting input
redirection. She also needs the ability to relinquish pointing input redirection, so she
can interact with the message.

Instead of completely obscuring all window UIs on the personal device, the UI for
a capturing window could be transparent. A transparent window UI allows the user
to see her messages and any other local window UIs. Instructions on the transparent
window’s UI would let her know how to access local windows. With XICE, when pointing
input is sent to remote windows, the UI for a transparent blocking window is shown
on the personal device (Figure 20). The blocking window’s UI is shown on handhelds,
laptops, and any other personal devices that have a single source for pointing input.

6.2.1.2 Independent pointing input. A straightforward way of supplying pointing
input to local and remote windows is to provide a dedicated source of input on the
personal device for each type of window. For example, similar to Oprea et al.’s [2004]
device, a compact, inexpensive optical mouse sensor could be mounted on the back of
a personal device. A prototype, called the MousePuter, has been created using a Sony
VAIO UX and the core hardware from an optical mouse (Figure 21).

The personal device can then be used like a mouse. The optical mouse on the under-
side of the personal device provides pointing input for remote windows; direct interac-
tion with the personal device’s screen supplies pointing input to local windows. Input
redirection becomes unnecessary, eliminating the need for a blocking window. This so-
lution works well for handheld personal devices, and the user can interact naturally
with any display server that does not supply input or that the user does not trust.

6.2.2. Text Input. In addition to providing pointing input to remote windows, the per-
sonal device should provide text input. The personal device could provide a full physical
keyboard, a small physical keyboard, a soft keyboard shown on the personal device, or
a soft keyboard shown on the annexed display.

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 3, Article 14, Publication date: July 2011.

XICE Windowing Toolkit: Seamless Display Annexation 14:27

Fig. 20. The UI for blocking windows informs the user that input has been redirected from local windows to
remote windows, and offers instructions for returning interaction to local windows on the personal device.
The software buttons along the bottom cannot be interacted with directly: the user must use the physical
buttons below them.

Fig. 21. MousePuter prototype.

6.2.2.1 Full physical keyboard on the personal device. A personal device such as a
laptop may provide a physical keyboard that requires little visual attention. A user
may type with the keyboard while watching the annexed display. The interaction with
this particular device setup is natural, because people use tactile and visual feedback
when entering text.

6.2.2.2 Small keyboard or soft keyboard on the personal device. If the keyboard is
small or soft, the user will typically spend most of her time looking at the keyboard
while entering text. Without looking, touch-typing accurately is difficult in the case of
the small keyboard, and nearly impossible with the soft keyboard. Consequently, she
will want to regularly look at the screen to ensure she is entering text correctly. In
such circumstances, she must frequently switch visual attention between the personal
device and the display server to confirm text entered.

If, however, the text input area on the remote window is duplicated on the personal
device, the user can confidently enter text by watching only the personal device. Sharp
et al. [2006] implement a form of this type of text entry. Unfortunately, in their solution,
the local window shows a small portion of a pixel-by-pixel copy of the remote window’s
UI that does not properly fit the personal device’s screen. The shown pixels are from
the area of the window’s UI directly surrounding the mouse cursor. As a result, the user
must regularly move the mouse to keep the entered text within the personal device’s
screen. To compensate for this, the local window must be able to adjust its UI for the

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 3, Article 14, Publication date: July 2011.

14:28 R. Arthur and D. R. Olsen, Jr.

Fig. 22. Using the personal device’s soft keyboard to provide text input for a remote window. The remote
window is copied to a local window so the user can immediately see the entered text on the rendered UI.

personal device’s screen. If just the text entry widget were replicated, it would have to
adjust as well.

XICE allows windows to adjust their UI to the personal device’s screen. XICE clones
the focused remote window’s presentation tree to a new local window, as shown in
Figure 22.

The clone is created when a widget on the remote window requests text focus.
Through model-view-controller (MVC) design, both the local window’s presentation
tree and the remote window’s presentation tree share the same model. The XICE ar-
chitecture makes cloning presentation trees simple and efficient without necessitating
application intervention. XICE automatically ties each cloned widget to the original
widget’s model, rendering the cloning process trivial. Each clone may adapt its ap-
pearance according to the screen’s parameters and the input available on the personal
device.

6.2.2.3 Soft keyboard on the annexed display. The personal device could show a soft
keyboard on the annexed display. The soft keyboard is easy to create and position near
where the user is already looking. However, the display server can perform malicious
acts with the soft keyboard. For instance, if the display server is blocked from sup-
plying text input directly, the display server may still commandeer the keyboard and
surreptitiously move it around the screen or rearrange the characters on the keyboard;
as a user attempts to enter standard text, she might inadvertently send malicious text
to the application. Consequently, XICE does not show a soft keyboard on an annexed
screen unless the user completely trusts the display.

7. XICE TOOLKIT AND NOMADIC EXPERIENCE

The XICE windowing toolkit has several major components that enable users to annex
display servers safely and confidently. XICE is designed around the idea that users push
UIs to display servers. The toolkit facilitates annexing devices and enables developers
to seamlessly write code that operates in all three nomadic situations. This section
will describe how XICE implements each of the nomadic situations: personal device
alone, annexed screen only, and annexed screen and input. Regardless of the nomadic
situation, applications must be able to build presentation trees, create windows, render
each presentation tree on a window, and receive user input.

An application must request that a “space” create a window. A space is software
on the personal device that represents the display area on which the window’s UI
will be rendered. A space tracks the screens, their sizes in VIC, and their relative

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 3, Article 14, Publication date: July 2011.

XICE Windowing Toolkit: Seamless Display Annexation 14:29

Fig. 23. Generic software organization for any application window. The window stores the presentation tree
and dispatches events from the event source to the tree. The window serializes the tree or renders the UI.

locations. The space manages the size, position, and z-order of any windows rendered
on that space. Spaces also perform the work necessary to show a window’s UI on a
screen. A local space creates local windows and represents the personal device’s screen
resources, whereas a remote space creates remote windows and represents an annexed
display server’s screen resources. Local spaces direct windows to render their UI’s on
the personal device, while remote spaces direct windows to serialize their UIs to the
display server.

To receive user input, a window must have an event source. An event source is
software that tracks and directs input from a machine. This input could be from a
single hardware device, from multiple hardware devices, or from multiple users on
a single machine. (With multiple devices, each device is identified using a unique
ID, similar to Multi-Pointer X [Hutterer and Thomas 2007]). The space automatically
registers each new window with an appropriate event source. The event source uses
the space to determine which window receives dispatched input (based on the size,
position, z-order, and text focus of the windows’ UIs). After the event source sends
input to a window, the window dispatches the input to the presentation tree.

A local event source is an event source that dispatches user input from the personal
device’s hardware. A remote event source dispatches user input from a display server’s
hardware. A space may supply either type of event source; a window is assigned a
single event source that is either local or remote. As XICE connects to a display server,
its space is assigned a default event source based on user preferences: a local event
source is assigned when the user does not want the annexed device to supply input,
and a remote event source is assigned when the user does want the annexed device to
supply input. When the space creates a window, the default event source is attached to
the window.

Applications always execute on the personal device; they are never transmitted to
a display server. Only the UI is serialized to a display server. As the user changes
an application’s nomadic situation, specific components used by the application may
change (e.g., an application may swap a local event source for a remote event source
or vice-versa), but the overall UI architecture remains the same. The general software
organization for all windows within an application is shown in Figure 23.

All pointing input within XICE is stored and transmitted in VICs. For instance, a
mouse location is stored in VIC’s relative to the display space, and dispatched accord-
ing to which window is directly under that mouse location. Button-click states are
transmitted with the mouse movements and whenever the button-click state changes.
Keyboard input is not related to VICs so keyboard input is dispatched to whichever
widget currently has input focus.

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 3, Article 14, Publication date: July 2011.

14:30 R. Arthur and D. R. Olsen, Jr.

Fig. 24. Application launch dialog rendered on the personal device.

Fig. 25. Personal device alone software organization.

Developers do not need to consider whether a space, a window, or an event source is
local or remote. Developers only need to create presentation trees and assign them to
windows.

7.1. Personal Device Alone

With XICE, users point, select, and execute as usual. When all input and output is
on the personal device, self-contained interaction does not differ on personal devices
such as laptops and PDAs. However, core application design and application startup
processes diverge from existing systems.

A user must be able to launch an application on her personal device. The XICE
framework, as implemented, provides an application launch dialog (Figure 24), and
users select an application from its UI.

After the user chooses an application on the personal device, XICE starts the appli-
cation and provides it the local space, so the application can show local window UIs.
The software is organized in accordance with the representation in Figure 25.

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 3, Article 14, Publication date: July 2011.

XICE Windowing Toolkit: Seamless Display Annexation 14:31

Fig. 26. The “Push” button initiates the process of annexing a display server. More options are available
through a drop-down menu (inverted triangle).

Fig. 27. XICE connection dialog UI. The user is pushing a window’s UI to the computer she named IceCream.

In the software organization for the personal device alone, the local space creates
a local window and assigns the local event source to that window. The window then
renders its presentation tree.

7.2. Annexing Display Servers

The process of annexing a display server should be as straightforward as possible,
particularly for frequently used display servers, such as the personal desktop. In win-
dowing toolkits, common window management functions are typically available in the
corner of the title bar. XICE employs a similar approach and adds new functions for
pushing a window to another screen. To reduce clutter and increase understandability,
two buttons are presented to the user: the standard “close” button with one other (a
drop-down provides access to other common functions). By default, a “Push” button is
shown in the upper right corner of window UIs on the personal device (Figure 26). The
user simply clicks the “Push” button to establish a connection with a display server
and push that window’s UI to the display server.

More specifically, after a user clicks the “Push” button, a connection dialog’s UI
is shown (Figure 27). The dialog lists display servers which the personal device has
previously annexed. A configuration file is associated with each of those display servers.
The user simply selects a display server’s configuration file, and the current window’s
UI is pushed to that display server.

Each configuration file contains the following information.

—The name of the display server (as assigned by the user)
—The domain name or IP address of the appropriate XICE display server
—Whether the display is trusted to show sensitive data (default: distrusted)
—Whether the display server’s input devices are trusted (default: distrusted)
—Where input comes from (default: local event source)

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 3, Article 14, Publication date: July 2011.

14:32 R. Arthur and D. R. Olsen, Jr.

Fig. 28. XICE connection properties dialog. The “Default Input” drop-down box is used to select which device
input comes from.

Fig. 29. An option on the personal device for changing the hardware input source.

These configuration files are intended to identify display servers the user connects to
regularly, like a desktop or a home television. In such situations, the user has a specific
trust setting meant for each respective display server. Saving these settings in a file
simplifies the annexation process for subsequent connections to a particular display
server.

People may also annex display servers they have never used before. To annex a
new display server, the user clicks the “Push” button, requests a new connection, and
enters the domain name or IP address of the display server. The connection dialog
clearly shows a “New. . .” button (Figure 27) users can click to initiate a connection
with a new display server. The user must be made aware of the display server’s domain
name or IP address; otherwise, she cannot connect to the display server. XICE can
show that information via a dialog on the display server, or the display’s owner can
post that information on a physical sign near the display server.

Editing a configuration file is inconvenient for users. XICE provides the dialog in
Figure 28 for editing the properties stored in the display’s configuration file. The green
check marks represent the default, safe configuration for those two properties.

When the user connects to a display server, the XICE toolkit provides an additional
dialog on the personal device to allow the user to manage the annexed screen. This
dialog lists the windows on the annexed screen and provides configuration options for
those windows and for the display server. One such option (shown in Figure 29) allows
the user to change the hardware input source.

The connection process can be accelerated with broadcast techniques such as Bonjour
[Apple 2010b] and location services [Thota 2005]. These techniques filter results based
on the personal device’s wireless access point or Global Positioning System (GPS)
location, enabling a user to easily and accurately select a nearby display server. Such
connection facilitators could be used by XICE but are not essential to this discussion.

Once a display server has been selected, the scene-graph on the current local window
is attached to a remote window. Remote windows’ UIs show the “Pull Back” option
(Figure 30) in place of the original “Push” button. The “Pull Back” button allows a

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 3, Article 14, Publication date: July 2011.

XICE Windowing Toolkit: Seamless Display Annexation 14:33

Fig. 30. A window’s UI that has been pushed from a personal device to a display server has a “Pull Back”
button that enables the user to easily remove that window’s UI.

Fig. 31. After a connection is made, local windows prepare to push their UIs to the annexed display server.

user to quickly remove individual scene-graphs from the display server and closes the
respective remote window.

After establishing a connection, pushing scene-graphs to the annexed display server
is simple. The “Push” buttons for all local windows change to “Push: Connection”, where
“Connection” is the name of the most recently connected display server. For example,
clicking the “Push: Orca” button in Figure 31 sends the scene-graph to the machine
the user named Orca.

After a scene-graph is attached to a remote window, the scene-graph is serialized to
the annexed display server. Then, the application executes normally.

Some applications may need to know if a user has pushed their scene-graphs to an
annexed display. In particular, widgets may need that information so they can adapt
their appearance based on the display server or context. For example, to protect email
addresses in a scene-graph from being shown on a public display—where other people
or the display server might steal them—the To and From address boxes would remove
those addresses from the scene-graph (described in more detail in the Protecting Dis-
tributed Applications section). To protect sensitive data, applications must be informed
that a scene-graph has been pushed to a distrusted display server.

XICE notifies each presentation tree when it has been moved to a different window.
When the user pushes a scene-graph, XICE creates the remote window, moves the pre-
sentation tree to the remote window, closes the local window, and then serializes the
scene-graph to the annexed display server. Before serialization, all widgets within the
tree are sent a recontext event to notify them that the scene-graph has been attached
to a new window. The recontext event provides each widget an opportunity to change
its appearance according to the window’s context. Most widgets ignore the event and
pass it to all child nodes. However, widgets that adapt to context can alter the presen-
tation tree. After all widgets have processed the recontext event, serialization proceeds
normally.

In addition to pushing a window’s UI from the personal device to the annexed screen,
a user may launch an application on the personal device directly from the display server.
The user clicks on the display server’s desktop and the personal device shows the appli-
cation launch dialog’s UI (Figure 24) on the display server. The dialog’s UI lists all the
applications installed on the personal device; any applications that might be installed
on the display server are not listed. The user selects an application that launches on his
personal device, and XICE supplies the application with the remote space for creating
windows. However, launching applications directly from a display server has security
and privacy implications (Protecting Distributed Applications: section 8).

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 3, Article 14, Publication date: July 2011.

14:34 R. Arthur and D. R. Olsen, Jr.

Fig. 32. Annexed screen only software organization.

Fig. 33. Remote cursor echo.

7.2.1. Annexed Screen Only. If a display server does not provide input devices, or if a
user distrusts the display server’s input devices, then the user is in the annexed screen
only situation. Figure 32 illustrates the software organization for a remote window
with input from the personal device.

The user needs to provide pointing and text input to remote windows using the
personal device. The remote space supplies a local event source to attach to new remote
windows. The local event source tracks the cursor’s position and shape, and transmits
that information to the display server for presentation to the user (Figure 33).

7.2.2. Annexed Screen and Input. In the richest nomadic situation, a user interacts with
data directly using the display server’s input devices. The user could annex a display
server, then set the personal device down or place it in her pocket. Although the
personal device would continue to run her applications, she would interact exclusively
via annexed devices.

To annex a screen and its input devices, the user changes the configuration settings
to accept annexed input (Figures 28 and 29). After this change, a remote event source
is attached to each new remote window on that remote space. Remote windows render
on the annexed display, input is processed on the personal device, and scene-graph
changes are serialized to the display server. The annexed screen and input software
organization is illustrated in Figure 34.

7.2.3. Annexed Input. Another potential situation is if the user just wants to accept
richer input for their personal device. For example, the user may want to annex a
keyboard and/or mouse so that he can have a richer typing experience or finer point-
ing ability within his applications. In this configuration, the display server’s input is
routed across the network to the personal device and then transmitted to the user’s
applications.

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 3, Article 14, Publication date: July 2011.

XICE Windowing Toolkit: Seamless Display Annexation 14:35

Fig. 34. Annexed screen and input software organization.

Fig. 35. Annexed input software organization.

To establish such a connection, the user is no longer pushing a window to a display
server. Instead, he is grabbing input from a display server. He must establish such
a connection through a channel other than the “Push” option from Figure 26, but
XICE’s software can easily handle such an organization. This software organization is
illustrated in Figure 35.

8. PROTECTING DISTRIBUTED APPLICATIONS

One major reason a user may enter into the annexed screen only situation—and then
have to provide all input from the personal device—is that she may not trust the
annexed display server to provide input. As mentioned earlier, some significant security
risks are introduced by distributing a UI to annexed screens. Four threats specific to
UI distribution are: stolen input, false input, stolen output, and false output.

With XICE, the personal device performs application processing to protect a user’s
sensitive code and data; code and data are never distributed to the display server, so
the display cannot directly steal that data. User input from the local event source is
never routed through the display server, so the display server cannot redirect user
input to different widgets or change the input the user supplies.

XICE has built-in provisions for privacy. The details of the levels of privacy protection
XICE supplies are unimportant for this discussion. What is salient is that display
servers may be assigned a privacy state of public (distrusted) or private (trusted). The
user specifies whether the display server is distrusted or trusted in the display server
configuration file. Input from a display server may also be considered distrusted or
trusted, and this setting is independent of the privacy state.

Most distributed UI solutions do not provide applications with information about
the privacy state of prospective displays. If an application does not have access to the
privacy state of a display, the application cannot take appropriate protective action.

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 3, Article 14, Publication date: July 2011.

14:36 R. Arthur and D. R. Olsen, Jr.

Consequently, each privacy-aware application must have its own way of detecting the
privacy state of a display, usually by allowing the user to input that state directly to
the application. Symbiotic Displays [Berger et al. 2005] takes this approach, allowing
the user to specify the privacy state of a display server directly to the application.

Instead of having a per-application privacy-aware solution, the windowing toolkit
should track the privacy state of the display, provide that information to applications,
and inform applications of any privacy state changes. Applications, on the other hand,
must inform the toolkit of sensitive input and output. By making the privacy state
available and identifying sensitive input and output, the toolkit and applications can
proactively protect sensitive data.

XICE provides the privacy state in the device context passed to each widget when
its presentation tree is attached to a window or when an event is dispatched to the
presentation tree. The most important event for privacy is the recontext event. To
protect sensitive data, applications that respond to the recontext event may change
their UI before distributing it to a public display server. In addition, applications may
tag presentation trees or sections of presentation trees as sensitive, and the XICE
toolkit can protect those trees or sub-trees from potentially malicious display servers.

8.1. Stolen and False Input

Stolen input occurs when the display server overtly steals sensitive input (e.g., user-
names and passwords) directly from the user. False input happens when the display
server impersonates user input to applications. False input usually happens in an at-
tempt to get the user to expose sensitive data (e.g., email addresses) to the display
server so that it can steal that data.

To protect against stolen input and false input, XICE automatically configures any
new connection to block input from a display server. If user input from the display server
is blocked, the display server cannot supply false input to the user’s applications. Also,
the display server is less likely to obtain sensitive input directly from the user.

When the user elects to accept display server input (the annexed screen and input
situation), XICE encourages her to distrust that input. So, a display server may supply
input that the personal device dispatches, but the input is tagged—per her settings—as
either distrusted or trusted. This tagging allows an application to identify what the
user considers unsafe input and take appropriate action with respect to that input.

8.1.1. Distrusted Input. Most input a user enters is not sensitive and does not affect
sensitive data. In these situations, the user can seamlessly supply input using annexed
input devices.

When annexed input affects data the software knows is sensitive, the software should
ensure that the user explicitly confirms that action on the personal device before imple-
menting changes. For example, XICE supplies the dropdown menu in Figure 36 on all
remote window UIs on public display servers. If the user clicks the “Show Private Data”
option, the window could expose all of the user’s sensitive data on that UI. However,
because input to the “Show Private Data” option is distrusted, XICE explicitly con-
firms the action on the personal device prior to exposure of any sensitive data. XICE’s
event handler for that menu option checks the trust tag on the mouse input, discovers
that the input is distrusted, and shows a confirmation dialog on the personal device.
The user must confirm the menu click on her personal device before the window will
explicitly show the user’s sensitive data on that public screen.

The confirmation dialog also alerts the user when the display server surreptitiously
attempts something malicious. In addition, when a widget expects sensitive input (e.g.,
usernames and passwords), the widget can check the trust level of the input source; the
sensitive input can then be requested on the personal device, preventing the display

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 3, Article 14, Publication date: July 2011.

XICE Windowing Toolkit: Seamless Display Annexation 14:37

Fig. 36. Options such as “Show Private Data” can be exploited by malicious display servers. XICE mitigates
such acts by explicitly confirming privacy-affected commands on the personal device.

server from accessing sensitive data. Both of these features further protect the user
against stolen and false input.

If an application supplies an option similar to the “Show Private Data” option, the
application must also enable the user to confirm that option on the personal device;
applications can easily detect when input is distrusted, so they can properly confirm
such actions.

The ability to launch applications on the personal device directly from the display
server is a known security threat. Unbeknownst to the user, the display server might
launch a susceptible application to exploit its vulnerability. On the personal device,
XICE automatically requires the user to confirm application launch requests originat-
ing from distrusted display servers.

8.1.2. Trusted Input. If a user completely trusts a display server (like she would at a
personal desktop), then none of XICE’s security measures are enforced. Users have a
seamless experience with fully trusted annexed display servers.

8.2. Stolen Output

Any data shown on a display server—including sensitive data like usernames, email
addresses, and phone numbers—can be stolen by that display server and potentially
used maliciously. The easiest solution is for users to never annex any display servers,
but that would unnecessarily limit users to the resources on their respective personal
devices. In addition, a trustworthy screen may be available in a public place. For
instance, a screen in a conference room might be trusted because the company properly
maintains the display server, but a presenter may not want sensitive company data to
be divulged to an audience of vendors.

To protect sensitive data, applications must be aware of public environments. The
user should account for the public nature of an environment by setting the display
server’s privacy state to public. When the application is aware the display server is
public, the application can appropriately protect the user’s sensitive data. XICE stores
a device’s privacy state as a property of the device’s space. The local space is always
private because it represents the personal device, but a remote space may be public or
private.

In XICE, the user can change a remote space’s privacy state at any time. For instance,
if a user is at her private desktop and a coworker approaches to discuss some work, the
user may change the desktop to public, protecting her sensitive data from the visiting
coworker. When the coworker leaves, she can change her desktop back to private.
XICE sends a recontext event when the privacy state of a display changes, informing
all windows and widgets of the change.

Applications that use sensitive data may need to proactively protect that data. The
developer of an email application may design it to ensure that each email is initially

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 3, Article 14, Publication date: July 2011.

14:38 R. Arthur and D. R. Olsen, Jr.

shown on a private display. To implement this functionality, the email application
checks the space’s privacy state before creating an email window; if the space is pub-
lic, the application shows the email window on the personal device instead of on
the public display server. If the user chooses to push an email to a public display,
the presentation tree receives a recontext event that contains the privacy state for
the new remote window. The “To” and “From” widgets receive the recontext event
and can then, like Symbiotic Displays [Berger et al. 2005], protect embedded email
addresses.

A simple way to protect sensitive data is to overlay black rectangles. Privacy Blinders
[Tarasewich et al. 2006] uses this approach to protect sensitive data. Even if viewers
cannot see the sensitive data, the display server still has access to the information,
since both the sensitive data and the overlaid rectangles are sent to the display server.
Widgets that protect sensitive data must scrub that data from the presentation tree
before the tree is serialized to a public display server. The recontext event affords
widgets opportunity to remove sensitive data from the presentation tree and ensures
that no sensitive data is inadvertently sent to a public display.

XICE provides some automatic systems to help developers protect sensitive data. For
instance, file dialogs may reveal sensitive data (e.g. file names or file system structure)
outside of an application’s control. Therefore, file dialogs should not show on a public
display. However, expecting each developer using the file dialog to properly implement
this restriction is not practical. Instead, the file dialog widget should automatically
ensure that the file dialog only shows on private displays.

To guarantee that a particular dialog only appears on private displays, XICE requires
that the dialog be tagged with the private only Java annotation. The UI for the dialog
is represented in a presentation tree that is rendered on a display, so the root of the
presentation tree must have the private only tag. XICE is designed so that public spaces
check for the private only tag and automatically redirect a tagged presentation tree to
a new window on the personal device. The private only annotation is only effective on
the root widgets in a presentation tree. Applying that annotation anywhere else is not
protected.

If developers create a subclass of a dialog that is tagged private only, the dialog re-
mains private only. Because XICE automatically redirects these dialogs to the personal
device, developers can use the original or subclass dialogs without implementing redi-
rection code or explicitly protecting those dialogs within the application. So the user’s
private file system is protected consistently across applications.

When a file dialog is opened on a public space and consequently redirected to the
personal device, the user needs to shift her visual focus from the annexed screen to
the personal device. However, if she expects the dialog to be rendered on the public
display she may be confused. To minimize this confusion, XICE automatically renders
a heads-up dialog on the public display whenever a private only dialog is redirected.
The UI for the heads-up dialog instructs the user to look at her personal device
(Figure 37).

In the annexed screen only situation, input on the personal device is typically directed
at remote windows. If a user performs an action on a remote window’s UI which creates
a dialog that is redirected to a local window, then input is also automatically redirected
to local windows. When the dialog closes, XICE automatically redirects input back to
the remote windows.

The heads-up dialog is likely to work best in situations where a user’s action caused
a redirected dialog to appear. If an application attempts to show a private window
independently of user action and the heads-up dialog appears, then the other users at
the display space may become confused as each tries to figure out if he is the owner of
that dialog. Such software design decisions are discouraged.

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 3, Article 14, Publication date: July 2011.

XICE Windowing Toolkit: Seamless Display Annexation 14:39

Fig. 37. File dialogs are not sent to public displays. Instead, a heads-up dialog rendered on the public screen
directs users to the file dialog’s UI on the personal device.

8.3. False Output

Display servers could overtly falsify the user’s application output. Falsifying output
includes any effort to coax users to expose sensitive data that the display server can
then steal. For example, selecting the “Show Private Data” menu option in Figure 36
causes an application to expose the user’s sensitive data. A malicious display server
might expect the user to click the “Copy Sheet” option, but wants the user to click the
“Show Private Data” option. To accomplish this, the display server would swap the
text of the two menu options, so the user thinks she is clicking “Copy Sheet” when, in
reality, the personal device interprets that click as “Show Private Data”.

A similar situation could occur when a user interacts with the application launch
dialog on a malicious display server. The display server might rearrange application
names or reposition the mouse cursor to coax the user into launching applications that
the display server could then exploit.

To mitigate the false output problem, critical inputs or outputs are shown only on
private devices. If the annexed device is public, XICE renders a confirmation dialog
on the personal device, and a heads-up dialog rendered on the display server lets the
user know she needs to enter input on the personal device. By double-checking critical
actions, XICE discourages a display server from falsifying output and prevents the
display server from surreptitiously stealing the user’s sensitive data.

9. BENEFITS OF THE XICE PROTOCOL

XICE is a windowing toolkit that offers a seamless nomadic experience and helps
mitigate or solve a wide array of problems related to creating a nomadic computing
environment. In particular, XICE is network-based to provide easy connection to a
variety of display servers and to accept input from them. The network-based protocol
also allows multiple users to annex a display server simultaneously. Unlike with VGA
connections, XICE users may show their personal applications on the same shared
display to compare information.

Scene-graphs defined in VIC allow XICE to distribute UIs to display servers in myr-
iad viewing situations that include multiple sizes, resolutions, and viewing distances.
Using the scene-graph increases the UI’s ability to adapt to window size, screen di-
mensions, and screen resolutions; reduces personal device CPU requirements; and
lengthens battery life on the personal device by offloading the rendering burden to the
display server.

XICE encourages development and implementation of a stable display server plat-
form. This stability results from a simple communication and rendering framework.

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 3, Article 14, Publication date: July 2011.

14:40 R. Arthur and D. R. Olsen, Jr.

One key benefit of a stable platform is that users and developers can trust that their
application UIs will have the same appearance, regardless of the device annexed. An-
other benefit is that users do not need to reconfigure their personal devices to deal with
each new display server’s installation.

If a user chooses to accept input from a display server, she will have an interactive
experience similar to her desktop. However, display servers might not supply input
devices, or the user may distrust input from the display server, so XICE encourages
users to annex only a display server’s output. Consequently, the personal device should
be used for all input to the user’s applications. When the user provides input on the
personal device, XICE can smoothly transition between local windows and remote
windows. Particular devices, such as the MousePuter, can leverage XICE to naturally
transition between local and remote windows by supplying dedicated input hardware
for each type of window.

XICE has several features that protect sensitive data from malicious displays. First,
core application processing is on the user’s personal device, so a malicious display server
cannot steal or alter that data. Second, annexing input is discouraged. Blocking display
server input ensures that the input comes from a trusted source: the personal device.
Third, accepting but distrusting input from the display server allows applications
to require the user to confirm actions that include or affect sensitive data. Fourth,
XICE sends applications the display server’s privacy state so that private data in the
application’s output can be protected. Fifth, XICE automatically prevents sensitive
dialogs, such as file dialogs, from rendering on public displays.

10. DEVELOPER EXPERIENCE

A key factor that influenced the design of XICE is how effective it is for developers
to learn and use. For example, in Section 5.3, this article mentioned the developer
confusion in relation to DVA.

There have been roughly a dozen developers who have used XICE to create applica-
tions. The developers in the lab pick up XICE relatively quickly. The overall scene-graph
structure takes little time to understand and start using. It takes only a few hours to
master the overall usage of XICE, from building scene graphs to showing new windows,
especially since developers do not have to deal with a distributed application unless
they choose to.

There have been several dozen applications built using the XICE windowing toolkit
and framework. Some of these test specific techniques while others pursue research
avenues independently of XICE. Some of the key programs implemented in XICE are a
spreadsheet application (called IceSheets), a text editor, a simple drawing application,
and presentation software. These applications have varying levels of sophistication,
as can be observed in the screen shots shown in Figure 38. IceSheets is designed for
research into new avenues with spreadsheets and represents more than six hundred
hours of developer effort. Most of that effort was spent implementing the various
mathematical functions for the spreadsheet. Little effort went into UI development. In
Figure 9, the user has “spilled” the IceSheets application and is panning it to another
position. Other programs are games, such as Checkers, tic-tac-toe, or Risk, which are for
training developers or pushing the graphical bounds of the toolkit. Checkers represents
about 40 hours of developer effort; tic-tac-toe about 8; and Risk—which includes some
automated game-playing capabilities—about 100.

When the privacy toolkit was added to XICE, IceSheets was already complete, but
an experienced developer retrofitted IceSheets to support privacy by hiding private
columns and rows, and graying out private cells. This retrofitting consumed about 8
hours of developer time, including the time it took to alter the data format to store

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 3, Article 14, Publication date: July 2011.

XICE Windowing Toolkit: Seamless Display Annexation 14:41

Fig. 38. Various applications implemented with XICE. 1) A presentation tool. 2) RiskTM. 3) Checkers. 4)
Tic-Tac-Toe. 5) A more sophisticated presentation tool. 6) Drawing application. 7) Privacy-aware text editor.

the custom values necessary to track which columns, rows, and cells contained private
data. The data issues are not XICE related.

11. LIMITATIONS OF THE XICE PROTOCOL

There are some limitations to the XICE implementation. Some of these are limitations
of developer resources; others are a limitation of the technology itself. This section will
discuss several of these important limitations.

11.1. Backward Compatibility

A key limitation of XICE is that all applications must be rewritten for the XICE
platform. When developing this framework, the authors considered this limitation and
chose to forgo backward compatibility for several reasons.

First, although RDP supports network transmission of WPF scene-graphs, this fact
is not widely known or easily discoverable. In addition, the source code for RDP is not
available for augmentation to handle the aspects of multiple input devices, multiple
focused windows (one per connected user), input redirection, and privacy that the
authors need.

Second, coercing RDP or X11 into Java and then to support multiple input devices,
multiple focused windows, input redirection, scene-graphs, and privacy is beyond the
resources of the authors, especially when trying to provide timely research. It was
easier to build the framework from scratch.

Third, separating the display spaces made for a natural addition of privacy because
privacy may be attached to a display server.

Fourth, the paradigm for nomadic application development is fundamentally differ-
ent from how legacy applications were built. With this new paradigm, a single ap-
plication may simultaneously show separate windows on different displays and even
display servers, with each window getting input from different sources. Legacy appli-
cations do not understand operating in this kind of environment. These applications
are designed under the assumption of a single, unified display space where a single
user interacts. Although backward compatibility would be nice for these applications,
the authors think that many of these applications need to be rewritten simply because
of the paradigm shift to a more flexible environment.

For example, consider the desktop and Windows Mobile versions of Microsoft Out-
look: neither version handles swapping between a tiny screen and a large screen, let

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 3, Article 14, Publication date: July 2011.

14:42 R. Arthur and D. R. Olsen, Jr.

alone rendering on both screens at once. The desktop version is only usable on an
annexed large screen, while the mobile version can only show small windows on an an-
nexed screen. The desktop version of outlook is pointless if it useless on a small screen.
The mobile version gains no benefit from annexing a screen. A new version or Outlook
that can simultaneously handle both a large and a small screen should be implemented.
This new version should incorporate privacy-aware interaction: for example, show a
window for privately selecting contacts via the smartphone while allowing the user to
type up a new email on an annexed screen.

Fifth, smartphones released in recent years (e.g., the iPhone [Apple 2011a] and
Android [Google 2011]) have shown that people are willing to rewrite applications for
different devices, especially if rich toolkits are available for these devices. Although
Android uses the Java syntax and a byte language, it is not backward compatible with
existing Java applications, especially because the Android has a different rendering
framework. Other technologies have also shown that developers are willing, if not eager,
to rewrite their applications to adopt the new technologies. This happened with the
advent of HTML and again with AJAX, especially when rich toolkits became available
for these technologies.

But, regardless of these reasons to not be backward compatible, backward compat-
ibility should be incorporated in the future, especially because users have existing
applications on laptops that should also fit into the ecosystem afforded by XICE.

11.2. Rendering Performance/Capabilities

In some situations, damage/repaint is faster than a scene-graph. This happens when
the scene-graph takes longer to serialize than to render the pixels and serialize the
frame buffer. For instance, scatter plots with hundreds of thousands of points or com-
plicated CAD diagrams may exhibit this property.

Pixel painting and photo editing are also not efficiently supported by XICE. To im-
plement these, for each change made to the image, the client device must render to a
new pixel buffer and serialize that buffer to the display server.

If a damage/repaint option is integrated into XICE, both of these problems may be
addressed.

11.3. Collaboration

Copy & Paste between application windows supplied by different personal devices is
not supported. For example, when two people share a display space, the first person
cannot copy an appointment to the other person’s calendar.

Part of this limitation is caused by the perspective of the authors that XICE should
inherently distrust display servers. Consequently, a display server might not be trust-
worthy to either broker a connection between the two users or to transmit data from
the first user to the second. The authors have not focused on this problem, but hope
to spur thought in this direction as users need more seamless collaboration via shared
display spaces.

11.4. Interaction Distance

XICE is not intended for large network distances: hosting an application in New York
and interacting with it in California is not likely to produce a favorable user experience.
Technologies such as HTML, AJAX, etc. provide a better experience over large distances
because they transmit code to the web browser for execution. With code executing at
the browser, the UI is more responsive.

However, with XICE, the user’s personal device is in the room with the display server.
So, the physical and network distances are short. Transmitting code is not necessary
to gain the needed interactive richness and responsiveness.

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 3, Article 14, Publication date: July 2011.

XICE Windowing Toolkit: Seamless Display Annexation 14:43

11.5. Animating Graphical Primitives

A common feature of modern scene-graph toolkits is animation of graphical primitives.
Unfortunately, XICE does not support such animation except through application-
level implementations (i.e., an application developer must create an animation loop to
update the discrete position of shapes). So far, with a low latency in the network, these
animations are nearly seamless. However, serializing animations to the display server
may have great performance benefits.

Animations are a natural extension of scene-graphs, as WPF has shown. An anima-
tion engine could easily be incorporated into the XICE scene-graph architecture and
animation instructions serialized to the display server for execution. Many animation
frameworks exist that could be used as a model for a XICE animation framework.

11.6. Video

As mentioned in Section 5.1, XICE has no video support. This support was not incor-
porated because the XICE rendering engine is implemented in Java, and JMF [Oracle
2011b] has poor video support, especially transforms, transparency, and graphical over-
lays to the rendered video.

If the XICE rendering engine were a platform-specific rendering engine (e.g., WPF
or Cocoa [Apple 2010c]) which supports deep integration of video with other graphi-
cal primitives, then support for simple video rendering and manipulation (e.g., play,
pause, fast forward) is straightforward. The XICE scene-graph would be transmit-
ted to the platform-specific rendering engine, which would interpret that scene-graph
accordingly.

11.7. 3D Graphical Primitives

Additionally, XICE does not provide facilities for 3D graphics, such as might be used in
gaming or visualization scenarios. The framework was designed with 3D graphics in
mind as a potential addition, but this was not included in the prototype. Incorporating
work similar to blue-c’s distributed 3D scene-graph [Naef et al. 2003] appears to be
straightforward.

12. FUTURE WORK

In the immediate future, researchers and developers can design or re-implement wid-
gets to be compatible with the XICE windowing toolkit, integrate and test multiple
personal devices and display technologies, and examine numerous collaborative work
environments.

Through XICE, input and output can be easily annexed, so widgets will need to
be redesigned to handle varying input sources and output sizes. Input devices will
range from the common mouse and keyboard to pens, styluses, fingers, lasers, game
controllers, gestures, and eye tracking. Hard-coding widgets to meet every possible
combination of input device and output device is excessively complicated; therefore,
widgets and software need to be designed to handle a more abstracted version of input
that can be stored and transmitted in a common way. The exact form of input/output
storage and the precise mechanism of input/output transfer also need to be determined.

XICE does not transmit any data other than scene graphs and device input, but
interaction with devices in the environment may require transmitting other kinds of
data. For example, an environment may have a printer with advanced features that
the user wants to print through. The user should be able to annex that printer and
send documents to it (probably using PostScript [Gosling et al. 1989]) and use that
printers advanced features using a UI that is familiar to the user (i.e., matches the
user’s look and feel on her personal device, but supplied by the printer, possibly using

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 3, Article 14, Publication date: July 2011.

14:44 R. Arthur and D. R. Olsen, Jr.

XICE). Speakeasy [Edwards et al. 2002] is one such approach for combining nearby
resources in flexible, powerful ways. Device Ensembles [Schilit and Sengupta 2004] lays
out a good taxonomy of where these design decisions need to take placed. XICE is an
example of a technology that fits in the “Application” (input and output redirection) and
“Data Format” (standardized scene-graph and hardware input) groups in the Device
Ensembles taxonomy. Such research should be explored in conjunction with the XICE
interaction model.

XICE is designed to support multiple users with a variety of input devices and display
server configurations. Exploration of scenarios and implications in the collaborative
realm, with well-designed user studies, would be appropriate.

REFERENCES

ADOBE SYSTEMS. 1996. Adobe Flash. http://get.adobe.com/flashplayer/ (accessed 6/11).
ANSI. 1984. GKS. ANSIX3.124-1985.
APPLE COMPUTER. 2010a. iPhone. http://www.apple.com/iphone/ (accessed 6/10).
APPLE COMPUTER. 2010b. Bonjour. http://www.apple.com/support/bonjour/ (accessed 6/10).
APPLE COMPUTER. 2010c. Cocoa. http://developer.apple.com/technologies/mac/cocoa.htmh (accessed 7/10).
ARGUE, R. 2007. Advanced multi-display configuration and connectivity. MS dissertation. Dalhousie Univ.
BARTELS MEDIA GMBH. 2011. MaxiVista. http://www.maxivista.com/ (accessed 1/11).
BAUDISCH, P., CUTRELL, E., HINCKLEY, K., AND GRUEN, R. 2004. Mouse ether: Accelerating the acquisition

of targets across multi-monitor displays. In Proceedings of Extended Abstracts on Human Factors in
Computing Systems (CHI’04). ACM press, 1379–1382.

BEDERSON, B. B., GROSJEAN, J., AND MEYER, J. 2004. Toolkit design for interactive structured graphics. IEEE
Softw. Engin. 535–546.

BERGER, S., KJELDSEN, R., NARAYANASWAMI, C., PINHANEZ, C., PODLASECK, M., AND RAGHUNATH, M. 2005. Using
symbiotic displays to view sensitive information in public. In Proceedings of the 3rd IEEE International
Conference on Pervasive Computing and Communications (PerCom’05). IEEE Computer Society, 139–
148.

BHARAT, K. AND CARDELLI, L. 1997. Migratory applications. In Lecture Notes in Computer Science. Springer
Berlin, 131–148.

BIEHL, J. T., BAKER, W. T., BAILEY, B. P., TAN, D. S., INKPEN, K. M., AND CZERWINSKI, M. 2008. Impromptu: A
new interaction framework for supporting collaboration in multiple display environments and its field
evaluation for co-located software development. In Proceeding of the 26th Annual SIGCHI Conference
on Human Factors in Computing Systems (CHI’08). ACM, New York, 939–948.

CANONICAL, LTD., 2011. Ubuntu 10.10, http://www.ubuntu.com/. (accessed 1/11).
CHAPUIS, O. AND ROUSSEL, N. 2005. Metisse is not a 3D desktop! In Proceedings of the User Interface Software

and Conference Technology (UIST’05). ACM, 13–22.
CISCO SYSTEMS INC. 1997. WebEx, http://www.webex.com/. (accessed 1/11).
CITRIX SYSTEMS, INC. 1997. Citrix Online, http://www.citrixonline.com/. (accessed 1/11).
EDWARDS, W. K., NEWMAN, M. W., SEDIVY, J., SMITH, T., AND IZADI, S. 2002. Challenge: Recombinant computing

and the speakeasy approach. In Proceedings of the 8th Annual international Conference on Mobile
Computing and Networking (MobiCom’02). ACM, New York, 279–286.

EQUALIZER GRAPHICS. 2008. http://www.equalizergraphics.com/ (accessed 1/11).
FLANAGAN, D. 2006. JavaScript: The Definitive Guide. O’Reilly Media, Inc.
GOOGLE, INC. 2011. Android, http://www.android.com/. (accessed 8/11).
GOSLING, J., JOY, B., STEELE, G., AND BRACHA, G. 2011. Java Language Specification, 2nd Ed. The Java Series.

Addison-Wesley Longman Publishing Co., Inc.
GOSLING, J., ROSENTHAL, D., AND ARDEN, M. 1989. The NeWS Book: An Introduction to the Networked Extensible

Window System, Sun Microsystems.
HOWARD, M. AND LEBLANC, D. 2003. Writing Secure Code, 2nd Ed. Microsoft Press.
HUTTERER, P., AND THOMAS, B. H. 2007. ‘Groupware support in the windowing system. In Proceedings of the

8th Australasian Conference on User Interface (AUIC’07). Australian Computer Society, Inc., 39–46.
INTERNATIONAL BUSINESS MACHINES CORP., 2011. NMON performance: Nigel’s Monitor. http://www.ibm.com/

developerworks/aix/library/au-analyze aix/. (accessed 1/11).

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 3, Article 14, Publication date: July 2011.

XICE Windowing Toolkit: Seamless Display Annexation 14:45

IZADI, S., BRIGNULL, H., RODDEN, T., ROGERS, Y., AND UNDERWOOD, M. 2003. Dynamo: A public interactive surface
supporting the cooperative sharing and exchange of media. In Proceedings of the User Interface Software
and Technology Conference (UIST’03). ACM, 159–168.

JIANG, H., WIGDOR, D., FORLINES, C., BORKIN, M., KAUFFMANN, J., AND SHEN, C. 2008. LivOlay: Interactive
ad-hoc registration and overlapping of applications for collaborative visual exploration. In Proceed-
ing of the 26th Annual SIGCHI Conference on Human Factors in Computing Systems (CHI’08). ACM,
1357–1360.

JOHANSON, B., FOX, A., AND WINOGRAD, T. 2002. The interactive workspaces project: Experiences with ubiquitous
computing rooms. IEEE Pervasive Comput. 1, 2, 67–74.

LIU, Z. 2007. Lacome: A cross-platform multi-user collaboration system for a shared large display. Computer
Science, University of British Columbia. http://hdl.handle.net/2429/378.

MICROSOFT CORPORATION. 2011a. Kinect, http://www.xbox.com/en-US/kinect. (accessed 1/11).
MICROSOFT CORPORATION. 2011b. logman, http://technet.microsoft.com/en-us/library/bb490956.aspx. (accessed

1/11).
MICROSOFT CORPORATION. 2011c. NET Framework http://www.microsoft.com/net/. (accessed 6/11).
MICROSOFT CORPORATION. 2011d. Network Projectors. Microsoft Corporation. http://msdn.microsoft.com/en-

us/library/aa934598.aspx. (accessed 6/11).
MICROSOFT CORPORATION. 2011e. Silverlight, http://www.microsoft.com/silverlight/. (accessed 6/11).
MICROSOFT CORPORATION. 2011f. Windows Phone 7 Series, http://www.windowsphone7.com/. (accessed 6/11).
MICROSOFT CORPORATION. 2011g. Visual C#, http://msdn.microsoft.com/en-us/vcsharp/default.aspx, 2000.
MYERS, B. A. 2001. Using handhelds and PCs together. Comm. ACM 44, 11, 34–41.
NAEF, M., LAMBORAY, E., STAADT, O., AND GROSS, M. 2003. The blue-c distributed scene graph. In Proceedings

of the Workshop on Virtual Environments (EGVE’03). ACM, 125–133.
NICHOLS, J., MYERS, B. A., AND ROTHROCK, B. 2006. UNIFORM: Automatically generating consistent remote

control user interfaces. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (CHI’06). ACM, 611–620.

NINTENDO CO., LTD. 2011. Wii, http://www.wii.com/. (accessed 1/11).
OLSEN, D. R. 1999. Interacting in chaos. Interactions, 42–54.
OLSEN, D. R., CLEMENT, J., AND PACE, A. 2007. Spilling: Expanding hand held interaction to touch table displays.

In Proceedings of TABLETOP ‘07. IEEE Computer Society. 163–170.
OLSEN, D. R., HUDSON, S. E., VERRATTI, T., HEINER, J. M., AND PHELPS, M. 1999. Implementing interface at-

tachments based on surface representations. In Proceedings of the Symposium on Human Factors in
Computing Systems (CHI’99). ACM, 191–198.

OLSEN, D. R., NIELSEN, S. T., AND PARSLOW, D. 2001. Join and capture: A model for nomadic interaction. In
Proceedings of the User Interface Software and Technology Conference (UIST’01). ACM, 131–140.

OPREA, A., BALFANZ, D., DURFEE, G., AND SMETTERS, D. K. 2004. “Securing a remote terminal application with
a mobile trusted device. In Proceedings of the 20th Annual Computer Security Applications Conference.
438–447.

ORACLE CORPORATION. 2011a. Java documents on DataOutputStream, Oracle Corporation,
http://download.oracle.com/javase/6/docs/api/java/io/DataOutputStream.html. (accessed 1/11).

ORACLE CORPORATION. 2011b. Java media framework, Oracle Corporation, http://java.sun.com/javase/
technologies/desktop/media/jmf/. (accessed 1/11).

ORACLE CORPORATION. 2011c. OpenJDK, Oracle Corporation, http://openjdk.java.net/. (accessed 1/11).
PAEK, T., AGRAWALA, M., BASU, S., DRUCKER, S., KRISTJANSSON, T., LOGAN, R., TOYAMA, K., AND WILSON, A. 2004.

Toward universal mobile interaction for shared displays. In Proceedings of the Computer Supported
Cooperative Work Conference (CSCW’04), ACM, 266–269.

PERLIN, K. AND FOX, D. 1993. Pad: An alternative approach to the computer interface. In Proceedings of
the 20th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’93). ACM,
57–64.

PETZOLD, C. 2006. Applications = Code + Markup: A Guide to the Microsoft Windows Presentation Foundation,
Microsoft Press.

PIERCE, J. S. AND MAHANEY, H. E. 2004. Opportunistic annexing for handheld devices: Opportunities and
challenges. In Proceedings of HCIC (HCIC’04).

REALVNC LTD. 2011. RealVNC, http://realvnc.com/. (accessed 1/11).
RICHARDSON, T., STAFFORD-FRASER, Q., WOOD, K. R., AND HOPPER, A. 1998. Virtual Network Computing. IEEE

Internet Comput. 2, 1.
SCHEIFLER, R. W. AND GETTYS, J. 1986. The X window system. ACM Trans. Graph. 5, 2, 79–109.

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 3, Article 14, Publication date: July 2011.

14:46 R. Arthur and D. R. Olsen, Jr.

SHARP, R., MADHAVAPEDDY, A., WANT, R., AND PERING, T. 2008. Enhancing web browsing security on public
terminals using mobile composition. In Proceeding of the 6th International Conference on Mobile Systems,
Applications, and Services (MobiSys’08). ACM, 94–105.

SHARP, R., SCOTT, J., AND BERESFORD, A. R. 2006. Secure mobile computing via public terminals. In Proceedings
of the International Conference on Pervasive Computing (PerCom’06). IEEE Computer Society, 238–253.

SHEN, C., VERNIER, F. D., FORLINES, C., AND RINGEL, R. 2004. DiamondSpin: An extensible toolkit for around-the-
table interaction. In Proceedings of the Symposium on Human Factors in Computing Systems (CHI’04).
ACM, 167–174.

SCHILIT, B. N. AND SENGUPTA, U. 2004. Device ensembles. Computer 37, 12, 56–64.
SHUEY, D., BAILEY, D., AND MORRISSEY, T. P. 1986. PHIGS: A standard, dynamic, interactive graphics interface.

Comput. Graph. Appl. 6, 8, 50–57.
SYNERGY. 2011. http://synergy-foss.org/. (accessed 1/11).
TARASEWICH, P., GONG, J., AND CONLAN, R. 2006. Protecting private data in public. In Proceedings of CHI’06

Extended Abstracts on Human Factors in Computing Systems. ACM, 1409–1414.
TAN, D. S., MEYERS, B., AND CZERWINSKI, M. 2004. WinCuts: Manipulating arbitrary window regions for more

effective use of screen space. In Proceedings of CHI’04 Extended Abstracts on Human Factors in Com-
puting Systems. ACM, 1525–1528.

TIGHTVNC GROUP. 2011. TightVNC, http://tightvnc.com/. (accessed 1/11).
THOTA, C. 2005. Programming MapPoint in .NET, O’Reilly Media, Inc.
TRITSCH, B. 2003. Microsoft Windows Server 2003 Terminal Services, Microsoft Press.
WANT, R., PERINS, T., DANNEELS, G., KUMAR, M., SUNDAR, M., AND LIGHT, J. 2002. The personal server: Changing

the way we think about ubiquitous computing. In Proceedings of the Ubiquitous Computing Conference
(UbiComp’02).

YUAN, F. 2000. Windows Graphics Programming: Win32 GDI and DirectDraw. Prentice-Hall.
YUE, C. AND WANG, H. 2009. SessionMagnifier: A simple approach to secure and convenient kiosk browsing.

In Proceedings of the 11th International Conference on Ubiquitous Computing (Ubicomp ’09). ACM,
125–134.

Received August 2010; revised February 2011; accepted March 2011

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 3, Article 14, Publication date: July 2011.

