
17

Window Brokers: Collaborative Display Space Control

RICHARD ARTHUR and DAN R. OLSEN, JR., Brigham Young University

As users travel from place to place, they can encounter display servers, that is, machines which supply a
collaborative content-sharing environment. Users need a way to control how content is arranged on these
display spaces. The software for controlling these display spaces should be consistent from display server
to display server. However, display servers could be controlled by institutions which may not allow for the
control software to be installed. This article introduces the window broker protocol which allows users to
carry familiar control techniques on portable personal devices and use the control technique on any display
server without installing the control software on the display server. This article also discusses how the
window broker protocol mitigates some security risks that arise from potentially malicious display servers.

Categories and Subject Descriptors: H.5.2 [Information Interfaces and Presentation]: User Interfaces—
User interface management systems (UIMS)

General Terms: Design, Algorithms, Performance, Human Factors, Security

Additional Key Words and Phrases: Wireless sensor networks, media access control, multi-channel, radio
interference, time synchronization

ACM Reference Format:
Arthur, R. and Olsen, Jr. D. R. 2012. Window brokers: Collaborative display space control. ACM Trans.
Comput.-Hum. Interact. 19, 3, Article 17 (October 2012), 21 pages.
DOI = 10.1145/2362364.2362365 http://doi.acm.org/10.1145/2362364.2362365

1. INTRODUCTION

People are nomadic and need to collaborate. Modern collaboration regularly involves
discussing data. Portable computers are often a source of that data, because a user can
guarantee that her data, software, and settings are always available wherever she is
located.

An increasingly common form of collaboration is via a large, annexable, shared dis-
play space. When a user annexes a screen, she may then share individual windows to
that screen so that others in the room may view and discuss the contents of those win-
dows. To annex the screens and share content in the most flexible way requires a net-
work UI distribution framework. Such a framework necessitates a network-connected
dedicated computer called a display server. Ideally, these display servers (regardless of
manufacturer) would use a consistent annexation protocol so that any client machine
may annex them.

Figure 1 illustrates a situation in which three users wirelessly connect to a display
server that controls a single display space. Each user is sharing at least one window
on that space.

Problems arise in how the display server coordinates shared windows. For instance,
should the person in the middle be allowed to enlarge his window and overlap one or

Authors’ addresses: R. Arthur, Microsoft Corporation; email: startether@startether.com; D. R. Olsen, Jr.,
Computer Science Department, Brigham Young University.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 1073-0516/2012/10-ART17 $15.00

DOI 10.1145/2362364.2362365 http://doi.acm.org/10.1145/2362364.2362365

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 3, Article 17, Publication date: October 2012.



17:2 R. Arthur and D. R. Olsen, Jr.

Fig. 1. Three users bring their laptops and annex a display space to share and discuss data. Via software
controls on their laptops, users may rearrange the remote windows.

both of the other users’ windows? The answer to this question depends on the situation.
The answer may be ‘yes’ if the users are the only ones in the room, but ‘no’ when there
are other people in the room who would have difficulty tracking the discussion if the
windows overlapped. Alternatively, the answer may be ‘no’ if the users are dividing the
display space, but ‘yes’ if the users are comparing windows.

Users could rely on purely social coordination (e.g., saying “Please don’t do that”) to
take care of conflicts, which may work well for a close-knit group of people. Unfortu-
nately, the social coordination approach is slower and is prone to abuse. Some users
need an automated approach to controlling a display space.

Users also need consistent control. The display space may be located in a room con-
trolled by a trusted institution (e.g., the employer), a room controlled by a less-trusted
institution (e.g., a conference hall), or a room controlled by an untrusted institution
(e.g., a competitor’s conference room). In addition, coordinating logins and control be-
fore interacting with a display space is counterproductive to quickly establishing a
collaborative group. Consequently, this control may need to be exhibited anonymously.
Users need to be able to quickly and smoothly exhibit control on display spaces they
may encounter only once and which they may not trust.

This article is about how to manage and flexibly enforce all the different control
paradigms a user might need in a variety of collaborative environments.

1.1. Motivating Examples

There are an infinite number of collaborative situations users could encounter. For
the discussions in this article, the following four example situations are helpful in
understanding these issues: presenter, discussion, panel, and visitor. This article uses
these situations to illustrate six different control techniques for managing the display
space.

In the presenter situation, someone gives a presentation to her teammates. This
person is in control of the presentation software and uses a control technique which
shows only her windows. When she opens the discussion to her teammates, one team
member has some relevant data he would like to share. The presenter then opts to

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 3, Article 17, Publication date: October 2012.



Window Brokers: Collaborative Display Space Control 17:3

Fig. 2. Kathy, the moderator, chooses Geoff to have floor control, so the windows from Bill and Alice are
hidden.

accept and show her teammate’s shared window on the display space. In this situation,
the presenter is in control and no one else may show content without the presenter’s
permission. This situation may also occur in a classroom or conference presentation.

The discussion situation consists of a group of people working on a common project.
Depending on the group members and the kind of discussion, there are multiple ways
to digitally assist the discussion. We have chosen to discuss the following four control
techniques (a subset of the possible options): free-form, moderated control, personal
space, and tiled. The free-form technique is when window placement is unconstrained.
Anyone may place any window anywhere. The moderated control technique is when
one user is delegated as the “moderator” and she is the only person who may rearrange
windows on the display space. The personal space technique is one where the display
space is partitioned so that each participant has her own section of the display. Win-
dows may reside only within the partition assigned to the window’s owner. The tiled
technique is one where windows may be placed anywhere on the display space, but if
the window overlaps any other windows, the overlapped windows are moved out of the
way or shrunk in size so that no two windows overlap. The tiled technique manages the
display space similarly to the Flatland [Mynatt et al. 1999] whiteboard management
tool—if one window’s movement would overlap another window, the other window is
pushed away or, if there is insufficient room to move, shrunk or hidden.

In the panel situation, a panel discussion is held at a conference. Several guests are
invited to be on the panel, and one person is the moderator. The discussion moderator
annexes the screen via her phone. Her phone has software installed which she can use
to choose which of the guests has the floor. The floor control technique will only show
windows owned by the guest who has the floor. Windows from other guests are hidden.
This result is illustrated in Figure 2. Assume Alice is currently granted floor control.
When the moderator, Kathy, changes the floor control to Geoff, then all of his windows
are shown, and all of Alice’s windows are hidden. Geoff may then show any content he
chooses using whatever software he owns.

Suppose Kathy is hosting other panels at other institutions as part of an ongoing
project. Rather than learning each institution’s moderating software, in this visitor
situation, she uses her personal moderating software at all the institutions.

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 3, Article 17, Publication date: October 2012.



17:4 R. Arthur and D. R. Olsen, Jr.

These four situations illustrate six different control techniques: presenter, free-form,
moderated control, personal space, tiled, and floor. A single display space may be called
upon to support all of these different techniques and any others which users deem
necessary. The display space should support techniques that are not known to the
display space but are familiar to its users.

1.2. Solution Requirements

There are two paradigms for how control techniques are provided to users: via the
display server or via a personal device. For instance, in the panel situation of Figure 2,
Kathy used the floor control technique installed on her phone. But the display server
could house the control technique instead. In this case, Kathy would use a computer
embedded in the room’s podium to select which of the presenters has the floor. While
embedding the software in her phone allows Kathy to carry a familiar application with
her wherever she goes, embedding the software in the display server ensures that
Kathy does not need to carry anything.

If the display server supplies the control techniques, a user can only employ server-
installed control techniques. If the user is previously unaware of an appropriate control
technique, then the user must find and learn a new technique on the spot. If the user
is already familiar with a technique that she wishes to apply, then she can encounter
frustrations in foreign rooms. Consider Kathy transitioning from the panel situation
to the visitor situation. She is accustomed to a specific piece of software at her home
institution and must now moderate a discussion at a foreign institution.

In a foreign room, Kathy must first find the floor control technique. If the technique
is available, she must recognize and choose it from the list of (potentially many) items.
However, if the floor control technique is unavailable, then Kathy has three options:
use an alternate technique, install the technique, or forego the technique. Kathy may
choose a technique that she hopes is similar enough and possibly learn that technique
on the fly, which is likely to be frustrating. She may install the technique she wants, but
because most institutions keep careful control over what may be installed, installing
new software will lead to interacting with the support (information technology or IT)
staff. Interacting with the IT staff requires her to either install the software on the fly
or ahead of time, which consumes time and energy. Finally, Kathy may forego using
the floor control technique, because that choice is easier than the prior paths, but it
requires her to spend more time giving verbal commands to the guests.

Because there are a potentially infinite number of control techniques that could
be developed, it is unreasonable to expect the display server to have every possible
version pre-installed. In addition, installing the software on the display server also
increases the efforts of the maintenance staff in keeping the display server up-to-
date and introduces users to potential versioning conflicts. For instance, a user may
inadvertently choose an older version of a familiar control technique and then become
frustrated with the bugs present or lack of features. Conversely, a newer version of the
technique may have unfamiliar features or options that get in the way when the user
is trying to accomplish some task. Consequently, the display space control techniques
should not be built into the display server.

Users should be able to bring their own control techniques and apply them to any
room, whether or not that technique was previously applied to that room. If Kathy
brings her own familiar floor control technique, then she can apply it to any foreign
room. This requires carrying a portable computer, but if that computer is her phone,
then this barrier is low. Now she does not need to learn a new technique, interact with
the IT staff, or deal with versioning conflicts.

In summary, a solution to the illustrated collaborative situations must meet at least
the following points.

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 3, Article 17, Publication date: October 2012.



Window Brokers: Collaborative Display Space Control 17:5

—Automated display control that supports automated control techniques (i.e., display
space management techniques).

—Plugin-free display control that supports new control techniques without installing
software on the display server.

—Familiar display control so that users do not need to learn new software to utilize a
known control technique.

1.3. Proposed Solution

This article introduces the window broker protocol which provides automated, plugin-
free, familiar, display control. Display servers do not have any control techniques in-
stalled but instead allow portable devices to supply a technique via network procedure
calls to the user’s personal device. Now a limitless variety of display space control
techniques may be applied to any given display server.

To implement the window broker protocol, a display server designates one machine
as a broker. For instance, in Figure 2, Kathy’s machine is set as the broker. When Bill
attempts to move the shown window, that attempt is forwarded to Kathy’s software
which denies that movement because Bill does not have floor control. However, if Geoff
moves the window, the attempt is also forwarded to Kathy’s software which approves
it because Geoff has floor control. The display server implements the results of each
forwarded call.

With the window broker protocol, users may carry their own display management
software anywhere they travel. Displays may now transparently implement new con-
trol techniques without installing new software because the decisions underlying the
techniques are made by the broker on a client machine.

1.4. Prior Work

There are several collaborative screen management technologies that have been devel-
oped for various installations, each with varying control techniques.

Some systems implement a free-form control technique and use the display space’s
computer mouse as the arbiter. The most basic systems that implement this are X-
Windows (X11) [Scheifler and Gettys 1986], Remote Desktop Protocol (RDP) [Tritsch
2003], or Virtual Network Computing (VNC) [Richardson et al. 1998]. These machines
place control over the placement of windows in the display server, and users must have
physical control of the display server’s keyboard and mouse to rearrange the windows.
Other systems that take a similar approach include IMPROMPTU [Biehl et al. 2008],
WinCuts [Tan et al. 2004], and Lacome [Liu 2007] which are designed for groups of
individuals who may periodically want to share and discuss information via a shared
display space. In such collaborative situations, a user is unlikely to go up to the shared
display and grab the input hardware just to exert control; he would rather exert control
from his own device using software he is familiar with.

Other systems include control techniques that facilitate specific cases. WeSpace
[Jiang et al. 2008] provides an API that can be used to implement control techniques
which are installed on the display server. One such control technique is implemented
by LivOlay [Jiang et al. 2008]. With WeSpace, someone could implement the tiled
technique in which no two windows are allowed to overlap. Unfortunately, the control
technique must be installed on the display server, so people can only use a technique if
it is installed on the server. This rigidity prevents users from portably using software
such as LivOlay or the tiled technique wherever they need it.

Collaborative single-display software will often have case-specific control software.
For instance, the Dynamo [Izadi et al. 2008] interactive display environment imple-
ments a sophisticated version of the personal space technique. The display space has
several computer mice installed, and a user may use one mouse to carve out a personal

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 3, Article 17, Publication date: October 2012.



17:6 R. Arthur and D. R. Olsen, Jr.

workspace from an available portion of the display space. However, interaction at
the display space is limited by the number of computer mice installed and is the only
control mechanism available. Limiting the number of users limits the collaboration
possible. Although Dynamo provides a nice technique for managing multiple users, the
implementation is rigid and cannot support the other control techniques discussed.

iRoom [Johanson et al. 2002a] with PointRight [Johanson et al. 2002b] provides
an interactive multi-user environment but does not provide a display control system.
PointRight is built on top of iRoom and controls what hardware device may provide
input to an individual display. Input from any device in an iRoom setup may be directed
to any display, but only a single set of input (keyboard and mouse) may be directed to
a display at any one time. Fundamentally, this approach controls a single display at a
time rather than the entire display space. For example, if one user is interacting with a
window on one display, then all other windows on that display are inaccessible to other
users. Consider also a user who is giving a presentation across multiple displays: that
user may control one display at a time but cannot control all of the displays.

A new, flexible, display-space control mechanism is needed which allows for a wide
variety of interactive collaboration techniques. This new control mechanism must sup-
port automated, plugin-free, familiar display space control so that institutions have
lower maintenance costs and users have familiar controls in any interactive room.

1.5. Window Broker

The window broker protocol is a display space management protocol which provides
automated, plugin-free, familiar display space control. The window broker protocol has
a simple authorization mechanism which gives a single user’s machine the power to
control if and where windows are created and positioned on the annexed display space.

The window broker protocol is implemented as part of a screen sharing protocol
called SPICE (SPaces for Interactive Computing in Education), but the techniques
could be incorporated into other UI distribution protocols, such as X11, RDP, or VNC.
The SPICE, and window broker protocols are built primarily in Java [Gosling et al.
2000] (version 1.6), and to ensure broader compatibility, a C# [Thai and Lam 2002]
version of the core protocols also exists.

The window broker protocol design stems from an attempt to control changes which
affect the overall display space. For instance, an instructor may need to blank the screen
to gain access to a whiteboard or show the contents of the screen again. also, She also
may need to change the volume of a rendered video or mute the screen altogether.
Other changes that need to be controlled involve the arrangement of windows on the
screen: create, move, show, hide, destroy, or change z-order. The protocol supports the
following controllable changes.

—Blank/Show screen (whiteboard access).
—Mute/Allow screen sound.
—Change shared-audio volume.
—Create a window.
—Move a window.
—Shelve/Unshelve (hide/show) a window.
—Destroy a window.
—Bring window to front.
—Send window to back.

The problem is how to authorize changes to these nine types of display space changes
and how to dynamically change the authorization mechanism. Automated authoriza-
tion allows a variety of display server control techniques. Dynamically changing those
control techniques allows users to have greater familiarity.

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 3, Article 17, Publication date: October 2012.



Window Brokers: Collaborative Display Space Control 17:7

Fig. 3. The display server forwards requests to the broker for authorization and then implements the results.

The window broker protocol designates one of the connected client machines as the
broker, which is also called the broker machine. Clients ask to be the broker and are
granted on a first-come first-serve basis. If there is no broker and no client asks to be
broker, then the display server implements the free-form control technique.

When there is a broker, the display server forwards requests affecting any of the nine
controllable changes (called forwarded requests) to the broker machine. The software
on the broker may allow, alter, or deny any request. The results of the broker software’s
decisions are sent back to the display server for implementation. This process flow is
illustrated in Figure 3.

Requests that are not forwarded to the broker machine are those that change the
content within a window: images, audio, video, and other graphics primitives. Those
requests must come from the window’s creator and are always honored by the display
server.

The broker machine may have client software which attempts to make changes to
the display space. For simplicity of software development and the toolkit, the client
software is separate from the broker software. The client software requests are routed
by the window broker API directly to the broker software (bypassing the display server).
The results of calling the broker software directly are sent to the display server and
implemented.

The window broker protocol provides automated, plugin-free, and familiar display
space control. The broker software provides automation, because it can automatically
enforce a control technique by modifying requests. For example, a broker algorithm
could enforce boundaries on a particular user by changing any requests that extend
outside that user’s boundaries into requests that stay inside the boundaries. Because
the broker software runs on a personal device, a control technique can be enforced
without requiring a new plug-in to be installed on the display server. Including the
notion of forwarded requests also provides familiarity by allowing users to carry and
use their own broker software.

1.5.1. The User Experience. The SPICE framework is designed for environments in
which display servers are unlikely to provide hardware input. The display server may
not provide input because it is physically distant from the users (e.g., a large conference
hall) or otherwise inconvenient for supplying input. Therefore, the user’s personal
device provides the input necessary to rearrange windows.

Instead of using PointRight’s [Johanson et al. 2002b] approach of treating the dis-
play space as an extension of the user’s desktop, SPICE treats the display space as a

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 3, Article 17, Publication date: October 2012.



17:8 R. Arthur and D. R. Olsen, Jr.

Fig. 4. Window arranger. (a) The icon view for managing the screen space. It shows a representation of the
windows shared on a dual-screen display server. (b) A screenshot from the display server.

separate screen space. On the user’s personal device is a UI which shows a represen-
tation of the display space and its windows—typically a world-in-miniature display.
The widget used to represent the display space and the windows is called a window ar-
ranger. Figure 4 shows a UI that users may encounter when annexing a display server.
In the middle of Figure 4(a) is the window arranger which shows all the different win-
dows that are shared on the display server. Other widgets in this UI are for sharing
individual windows to the display server or applying an individual control technique.
Figure 4(b) shows a screen shot of the actual display space represented in Figure 4(a).
In Figure 4(a), the user has selected a window in the middle which she may move,
resize, or close. In addition, there is one hidden window which is listed at the bottom
of the window. Note that the world-in-miniature view shown in Figure 4(a) is only a
potential UI and is not required by the window broker protocol or windowing toolkit.

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 3, Article 17, Publication date: October 2012.



Window Brokers: Collaborative Display Space Control 17:9

Client software could implement any of a variety of user interfaces that accomplish
this task. A given user will always see the UI that they are most familiar with.

Moving or resizing a window via the window arranger is not performed live. Instead,
the window arranger shows a preview of where the user is attempting to move a
window. When he releases his mouse button, the window arranger attempts to move
the window, to that destination location. To move the window, the software creates
a move request and sends it to the display server, which forwards it to the broker
machine, which authorizes the request and returns a response to the display server,
which then implements the response. If the move request is denied, then the display
server sends the client a “rejected” notification. When the client software receives the
rejection, the software causes the moved icon of the window to snap back to its previous
location, which informs the user that the request was denied. If the broker software
moves the window to a different location, then the new location is sent to the client
and similarly reflected in the window arranger.

If the broker user is the user trying to move a window, the process is slightly simpli-
fied. The broker user still sees, and the same feedback that a typical user sees, and the
broker user’s requests are treated like any other user’s requests. However, the requests
bypass the display server and are forwarded directly to the broker software. The broker
software’s results are reflected to the broker user, and any changes to the display space
are sent directly to the display server and performed. Subsequently, all other client
devices are notified by the display server.

1.5.2. Solving the Four Situations. The window broker architecture can be used to imple-
ment the four example situations (from Section 1.1) via a separate broker algorithm
for each situation.

Broker software has one or more sets of rules which govern how the software handles
forwarded requests. A set of rules is called a policy, and broker software may have more
than one policy, but the software will enforce only one at a time. Policies are analogous
to control techniques.

Each of the various brokers and policies developed for solving the four situations
delineated earlier are discussed next.

Presenter situation. In the presentation situation, the user employs software that
has a presenter broker algorithm which handles all forwarded requests. The presenter
broker uses one of two policies: exclusive or audience. Because the presenter should
not be interrupted while giving a presentation, the exclusive policy is the default policy
and denies all forwarded requests. With the exclusive policy in use, audience members
cannot directly affect the presentation (e.g., show unsolicited material on the display
space). Once the presenter finishes her presentation, she may switch to the audience
policy. The audience policy denies all requests except create requests. However, the
audience policy shelves the created window (i.e., hides the window so it is not rendered
on the display server). An example of a shelved window is the single window shown
along the bottom of the UI in Figure 4(a). The bottom of the UI is also called the shelf.
The presenter software is informed of the created window so that the presenter may
choose to drag that window from the shelf onto the display space, showing the window.
In this way, audience members may still participate in the discussion and cannot show
unsolicited material.

Discussion situation. In the discussion situation, a group of people work on a common
project. This article illustrated four control techniques for managing this space: free-for-
all, moderated control, personal space, and tiled. These techniques are described next.

Free-for-all and moderated techniques. The discussion broker software implements
the free-for-all and moderated control techniques. The discussion broker software can

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 3, Article 17, Publication date: October 2012.



17:10 R. Arthur and D. R. Olsen, Jr.

Fig. 5. Split space enforcement. Two users share the same display space. Each user’s windows may only
appear in that user’s half of the display space.

employ one of three separate user-chosen policies: moderated-control, only-owned, or
free-for-all.

All three policies allow users to create windows. However, like the audience policy,
the moderated-control policy shelves all created windows, and only the group leader
may choose to show any of the hidden windows. The moderated-control policy denies all
other forwarded requests. The only-owned policy honors requests that affect windows
that the requester owns and rejects requests that would affect other windows. The
free-for-all policy allows anyone to affect anything shown on the display space. Now
the various group members can share and discuss individual windows on the display
space using either the free-form, only-owned, or moderated-control technique.

Personal space technique. The personal space technique is implemented as separate
broker software called the split space broker. This broker has a single policy with three
broad rules.

—Divide the space equally among the participating users.
—Allow users only to move windows they own.
—Keep a user’s windows within that user’s partition.

This split space policy acts similarly to that of the Dynamo display space management
paradigm, except that the space is automatically allocated to each user rather than
“carved out” by each user.

Figure 5 illustrates what the display space partitioning looks like. Figure 5(a) shows
a clipping from the window arranger with window placements, while Figure 5(b) is
the screenshot of the display space represented in Figure 5(a). In this example, two
people are connected to the display space, so the policy divides the space horizontally.
Both users get equal-sized partitions of the space that are as close to square-shaped
as possible (minimum perimeter length): one partition is on the left, the other on the
right.

The split space broker software must be able to handle adding and removing partici-
pants, particularly when the display space is already divided among some participants.
Suppose some user connects to the display space not to share content, but to copy con-
tent and take notes. Connecting to the display space should not cause a rearrangement
of all the windows on the display space, which can be frustrating to the users who
already have space allocated and are utilizing that space. Consequently, the broker
software allows the user—or broker user—to select which of the connected clients are
considered participants.

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 3, Article 17, Publication date: October 2012.



Window Brokers: Collaborative Display Space Control 17:11

Fig. 6. Participant selection UI. The broker user chooses participants from the list of connected machines.

To allow the broker user to choose which client machines are participants, the split
space software provides the UI in Figure 6. When a client becomes broker, the display
server supplies that client with a list of all the connected clients and notifies the broker
machine when a client connects or disconnects.

The split space broker software uses these connection notifications to update the
participant selection UI shown in Figure 6. This UI lists all the non-participating
clients in the left column, and the broker user may move any of those clients to the
“participants” category on the right.

With each selection or removal of a participant, the split space broker software re-
divides the display space. The software attempts to preserve the window arrangements
within divisions and attempts to keep the divisions as close to their original location
as possible.

Tiled technique. The tiled technique is implemented as the only policy in the flatland
broker. This broker allows anyone to share any information on the display space.
The only constraint is that no two windows may overlap. Rather than enforcing this
constraint by preventing window movement, any window may be moved to any location
on the display space, and all other windows are move out of the way. Figure 7 shows
a screenshot from the client machine in Figure 7(a) and from the display server in
Figure 7(b).

Moderated situation. The moderated situation is a combination of the presenta-
tion situation and the personal space technique. No audience members can inter-
rupt the various presentations, only the presenters may show windows on the dis-
play space, and windows can only be shown and arranged by the client with floor
control. The moderator launches her moderator broker software, becomes the broker
for the display space, chooses who the participants are via a UI similar to the one
in Figure 6, and then moderates the discussion. She chooses one person at a time
to have floor control and, thus, absolute control of their own windows on the display
space.

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 3, Article 17, Publication date: October 2012.



17:12 R. Arthur and D. R. Olsen, Jr.

Fig. 7. Flatland window management where no two windows may overlap.

Fig. 8. Possible moderator software UI. The person selected on the right is the floor. The countdown on the
left is used to time the current speaker.

The moderator uses the UI in Figure 8 to select the participant to assign as the
floor. The chosen participants are shown down the right side, and the selected one is
the floor. For example, Mitchell has the floor in Figure 8. The moderator can also time
Mitchell’s presentation using the clock on the left, and give him subtle feedback about
his progress.

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 3, Article 17, Publication date: October 2012.



Window Brokers: Collaborative Display Space Control 17:13

Visitor situation. When the moderator is asked to travel to a new location, she can
become broker for that display space. Because of the window broker API, she does not
need to install any software supplied by that display space’s owner onto her personal
device, nor must she install new software on the display space to support her moderator
software. The only software that must be consistent between her client machine and the
display server is the window broker protocol. With such consistency, she can confidently
manage the display space for a separate discussion.

Situation solutions summary. In each of these situations, the broker software is
always installed on a user’s personal device. The display server is always just a
display server and performs the tasks required to display information. Because the
display server can forward requests to the broker device via remote procedure calls,
the display server does not need to change to support a new interactive technique.

On the other side of the issue is the fact that users always bring their own broker
software with them. This broker software is always the software that they know and
are familiar with. The software presents a UI on the user’s personal device via a
known screen and input devices, which keeps the software familiar regardless of the
environment.

1.6. New Challenges

With the window broker protocol, some new challenges present themselves. These chal-
lenges include situations without brokers, wresting control from a broker, distrusted
display servers, asynchronous requests, and client-side broker preview.

1.6.1. Situations without Brokers. Some collaborative situations may not need a window
broker. In such cases, the display server performs all of the requests from any connected
device without forwarding the requests. This approach effectively results in the free-
for-all control technique. Conflicts that occur between users are expected to be resolved
socially.

1.6.2. Wresting Control from a Broker. Envision an English professor who has just finished
instructing a class. The English professor neglects to relinquish broker control as he
leaves. A math professor teaching the subsequent class enters the room a few minutes
later, attempts to become broker, and discovers that someone else has control. The
math professor must be able to quickly and easily gain control of the display space.

Or, imagine the case in which the math professor attempts to take control of a display
server and finds that someone else in the room is already broker. This student may
be attempting to surreptitiously interfere with the math professor’s presentation by
allowing the professor to give his presentation, but during the presentation, the student
rearranges windows or shows additional content.

There are two options for resolving these situations: ask for or take control. To ask
for control means physically and personally asking the English professor to relinquish
control. Unfortunately, the math professor may not be aware that the English professor
is the prior professor in the room, or know the English professor. Worse yet, the English
professor may have granted control to a student who also left; in such case, tracking
that student down may be difficult. Instead, the window broker protocol must allow
the math professor to take (or wrest) control from the current broker.

The math professor is in the same room as the display space, so wresting con-
trol should be straightforward. The default SPICE display server software provides
a UI which can discard the current broker and possibly assign a specific machine
as broker. Other installations may have a different setup but a similar goal. This
UI may be a physical button on the display server which, when pressed, disconnects
the current window broker, or the UI may be a more sophisticated interface listing

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 3, Article 17, Publication date: October 2012.



17:14 R. Arthur and D. R. Olsen, Jr.

the currently connected users from which the math professor may select himself. The
key is that physical control of the display server can override any currently assigned
broker.

1.6.3. Distrusted Display Servers. Within a controlled environment (e.g., a corporate or
classroom environment) users can probably expect that a display server is completely
trustworthy. The maintenance staff will keep the display servers free of malware that
could damage client devices. However, not all display server environments would neces-
sarily be as controlled or safe. For instance, a display server embedded in a restaurant
table, in a mall kiosk, or a hotel room may not be as well maintained. These display
servers may have malware that was transmitted to the display by a previous user
intentionally or unintentionally. The window broker protocol should not be available
as a virus vector so that future users may be protected from infection.

The window broker protocol does not act as a virus vector because it never transmits
software. Instead of transmitting code, the window broker protocol supports a limited
set of commands which client and server machines interpret.

Flaws in the window broker protocol implementation (e.g., buffer overruns) may still
exist on the display server or client machines, but the design of the protocol does not
invite infection.

1.6.4. Asynchronous Requests. Some personal devices may generate situations with
high network latency or temporary disconnections from the display server. The dis-
play server should not lock up during these situations and neither should the personal
devices. Within the window broker protocol, there are two main sources for high net-
work latency or temporary disconnections: small devices and manual authorization.

Small devices, such as smartphones, tablets, and netbooks, could become broker
machines. These machines might not share windows on the display server, but they
could still manage the screen space. For instance, in the moderator situation, the user
employs her smart phone to moderate the discussion without showing any windows.
These small devices often have slower processors than laptops and may be limited to
slower network speeds.

In some cases (e.g., iPhone [Apple 2010] or Windows Phone 7 Series [Microsoft 2011]),
these devices can only execute one application at a time. Although iOS 4 claims support
for multitasking, it still can execute only one application at a time, there by suspending
any application that is not the foremost application. This means that if the first appli-
cation is the window broker, then it could be swapped out at any time; the user may
temporarily be swapping to another application and could be back soon. As a result,
the window broker software must be prepared to resume as broker at any time.

If the display server drops the smartphone as the broker because the window broker
software is swapped out, then the smartphone may not be able to resume as broker.
Consequently, someone else may take control in the interim. If the display server stops
accepting requests—or locks up—while the broker software is swapped out, then the
display server will not be able to update content supplied by other attached users. For
example, if the moderator swaps to another application momentarily to take a note,
then the person with floor control may not be able to change to the next slide. The
display server must allow the smartphone to continue being broker and must not lock
up while waiting for that broker application to resume.

The window broker protocol employs a simplified network remote procedure call pro-
tocol. Remote procedure calls are typically treated as a standard (albeit slow) method
call. To ensure that the call waits until a response is available, most RPC systems rely
on the call stack and TCP connection to maintain state. Because the blocking thread is
frequently the UI rendering thread, an application can appear to freeze or lock up.

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 3, Article 17, Publication date: October 2012.



Window Brokers: Collaborative Display Space Control 17:15

If a slower device is the broker and if all requests to the device are synchronous
(meaning the display server blocks on a thread and socket while waiting for a response),
then the slower device becomes the bottleneck in the experience for all other users of a
display space. For instance, the display space could lock up while waiting for a response
to a “move window” request. In addition, the client requesting to move that window
would lock up while waiting for the display server which is waiting for the broker
software to respond.

Locking up while waiting for a response from the broker machine is not acceptable.
The protocol must support broken connections and occasionally long periods of time
between requests and responses.

Related to the problems created by slower devices are manually authorized requests.
In most cases, broker algorithms are likely to be completely automated. In some cases,
however, the broker algorithm may make decisions based on user input. For instance,
the algorithm may show a prompt when a client requests to blank or show the screen. In
such cases, the display server and other client software should not block while waiting
for the broker machine to process the request.

To support the high latency and temporary disconnection required for slower devices
and manually authorized requests, the window broker protocol requests are always
asynchronous (meaning that the display server and client do not block on a thread and
socket while waiting for a response). The source of each request assigns that request
a unique ID and the broker tags the corresponding response with the same ID. Then
the display server can match a response with the original request and implement
the response accordingly. When the broker machine is temporarily disconnected, the
display server queues any incoming forwarded requests and transmits the requests to
the broker the next time it connects. In the meantime, any client software waiting for
requests to be authorized are still interactive, but the display server will not reflect the
requested changes until the broker responds.

To detect when a temporary disconnection is actually a permanent disconnection—
regardless of whether that client is the window broker—the broker protocol uses a
technique similar to that of HTTP session management. If a client does not reconnect
within a small timeout—two minutes by default—then the client is assumed to have
disconnected (e.g., the owner turned off his personal device and left the room without
explicitly disconnecting). The display server then dumps all pending messages for that
client. If the client is the window broker, then the display server processes each pending
request, denying each. Each request is denied so that the display space maintains its
current state instead of trying to merge all the pending state-change requests; having
the display server suddenly update to match all the pending requests can be a visually
jarring experience for the other clients. After clearing all pending queues, another
client may become broker.

1.6.5. Client-Side Broker Preview. The broker can greatly affect the actions that other
clients may perform. It may accept, deny, or alter any of the forwarded requests. To help
a non-broker user make good decisions, the window arranger should provide feedback
about possible actions. For instance, if the flatland broker is currently enforced, a non-
broker user might like to see a preview of how the other windows would be positioned
when she moves a window.

Consider Figure 9, which shows the client-side view of the display server’s state. In
this case, the current broker is the split space broker, and the user is enlarging the
window by dragging the bottom-right corner. As can be seen in Figure 9(a), this move
is illegal per the split space broker because the window encroaches on another user’s
partition. It would be better if the client were presented with the legal move shown in
Figure 9(b).

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 3, Article 17, Publication date: October 2012.



17:16 R. Arthur and D. R. Olsen, Jr.

Fig. 9. Reflecting split-space constraints on a client machine. (a) Shows an illegal move that an uninformed
UI could present. (b) Shows the proper, legal action where the window is constrained to the left half of the
display space.

The window arranger provides direct feedback about potential actions. One option
would be to ask the window broker directly about the limits or consequences of a user’s
actions. Unfortunately, because the broker could be disconnected or the network could
be a little slow, asking the broker directly for feedback about potential actions may not
give timely information.

Another option would be for the broker to transmit software via the display server to
each of the other clients. The code transmitted would be some common framework, such
as JavaScript [Flanagan 2006], Java, ActionScript [Moock 2007], or MSIL [Thai and
Lam 2002]. However, this is a highly insecure option. The window broker could transmit
malicious broker software to the display server, which it would then transmit to each
client, or the display server could have malicious software installed, which it transmits
to clients in lieu of the actual broker software. The only way to mitigate this approach
is to painstakingly sandbox the environment for hosting the transmitted software.

Instead of these prior two options, the window broker protocol makes a compromise,
that is, transmitting static information about the window broker and possibly using
the same broker software if it is already installed on the client machine. To implement
this, the window broker protocol has two additional features: policy hints and policy
emulators. Policy hints supply a static, simplified version of the currently enforced
policy and give client software a broad idea of potential actions. Policy emulators give
information about the actual policy being enforced so that clients that have that policy
installed can instantiate the policy and use it to emulate what the window broker
software would actually accomplish.

Policy hints. Many brokers implement similar rules, although sometimes with
slightly different implementations. For instance, the discussion broker’s only-owned
policy is similar to the split space and moderator broker policies. Likewise, the discus-
sion broker’s only-broker policy is identical to the presenter broker’s audience policy
(which creates windows but shelves them) and similar to the presenter broker’s exclu-
sive policy (which does not allow creation at all).

Most of the decisions these window brokers make are straightforward, simple deci-
sions. These decisions are usually to allow or deny and are usually based on ownership
or participation. In some cases, extra processing is needed for the broker software to
make a decision (like the split space or flatland brokers which keep windows within a
partition or move other windows in response). The window broker protocol takes ad-
vantage of the similar simple decisions of many brokers while allowing more complex
decisions by other brokers.

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 3, Article 17, Publication date: October 2012.



Window Brokers: Collaborative Display Space Control 17:17

Participants Only False 
Create Window Brokered 
Change Volume Denied 
Change Mute Denied 
Change Blank Denied 
 Owned Not Owned 

Move Brokered Brokered 
Shelve/Unshelve Brokered Brokered 

To Front Allowed Allowed 
To Back Allowed Allowed 
Destroy Allowed Allowed 

Fig. 10. Policy hints for the tiled control technique in the flatland broker. This is a participant-based broker,
and users are allowed to alter any windows, but the broker may adjust a window’s final positions.

To inform client machines about possible actions without transmitting code, the
window broker protocol supports transmitting policy hints. These hints are key-value
pairs of a hint type and its value.

There are 15 hints, 14 of which represent a forwarded request. The 15th is described
later. For each request that affects a window (move, destroy, shelve, to front, and to
back), there are two hints: one for window owners and another for non-owners. The
value for each hint is one of three values: allowed, denied, or brokered. Allowed means
that the request will always be authorized by the broker software. Denied means that
the request will always be denied by the broker. Brokered means that the result is too
complicated to express as either allowed or denied; the client can request that action,
but the broker could allow, deny, or alter that request. The “create window” policy
hint supports a fourth option called Shelved. Shelved means that window creation is
allowed, but the window is hidden.

The 15th policy hint is a Boolean which expresses whether the broker software is
participant based. If the software is participant based—such as the moderator and
split space brokers—then participants use the 14 other hints, and non-participants’
software assumes every action is denied.

Consider the policy hints for the tiled control technique, which are shown in
Figure 10. This control technique constrains the movements of the affected win-
dow (by keeping it within the display space’s bounds) and arranges any neighboring
windows. Hence the “Brokered” tag on window creation, movement, and shelving.

Also observe the policy hints for the only-owned policy (which is part of the discussion
broker) shown in Figure 11. This policy is participant based and only allows users to
affect their own windows. Creating windows is brokered because the participant with
the floor can show those windows immediately, while all other created windows are
shelved. Similarly, only the participant with floor control can change the shelved state
of her windows.

For a window arranger on a client machine to give proper feedback about what options
are allowed, the window arranger must know whether its executing client machine is
a participant. Client machines do not have a direct connection to the window broker
because the display server is an intermediary. Consequently, the display server must
inform each client machine about whether it is a participant. The display server can
only know which clients are participants if the window broker exposes that particular
information to the display server. So, a participant-based window broker must inform

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 3, Article 17, Publication date: October 2012.



17:18 R. Arthur and D. R. Olsen, Jr.

Participants Only True 
Create Window Brokered 
Change Volume Brokered 
Change Mute Brokered 
Change Blank Brokered 
 Owned Not Owned 

Move Allowed Denied 
Shelve/Unshelve Brokered Denied 

To Front Allowed Denied 
To Back Allowed Denied 
Destroy Allowed Denied 

Fig. 11. Policy hints for the moderator technique in the moderator broker. This is a participant-based broker,
and users are allowed to alter their own windows but not others.

the display server when a participant is added or removed. Then the display server can
inform each of the clients of changes in the participants list.

Exploitability. The policy hints portion of the window broker protocol is difficult for
a malicious display server or window broker to exploit. Client software interprets the
policy hints without executing server- or broker-supplied software because each policy
hint is a static value and contains no code. Although the display server may alter the
broker-supplied values, altering those values provides no visible benefit to the display
server toward exposing sensitive data or infecting a client machine.

Policy emulators. The policy hints effectively express the simple decisions that bro-
kers may make. However, brokers, such as the tiled and split space brokers, have
sophisticated algorithms that are too complicated to describe using policy hints. These
algorithms cannot be transmitted using the policy hints portion of the window broker
protocol.

Rather than transmit the window broker’s code, client machines could use software
they already have installed. Envision a group of three people using the split-space
control technique. The first worker is the broker user and has the split space broker
software installed, the second user works at the broker user’s institution, and the third
user is visiting. The second user has the discussion broker installed, while the visitor
does not. When the first user’s personal device annexes the display space, it requests
to be broker and informs the display server of the policy hints, which include the name
of the split-space control policy.

The second-user annexes the display server, and her personal device is informed
that the split-space control technique is in use. Her personal device finds and executes
the locally installed split-space control code so that the window arranger can use it
to emulate a preview that keeps her windows within her partition, similar to what is
illustrated in Figure 9(b).

When the visitor’s device annexes the display server, it is also informed of the pol-
icy hints, including the name of the split-space control policy. However, the visitor’s
machine does not have the split space software installed; therefore, akin to what is
shown in Figure 9(a), she can drag windows around, but the preview does not con-
strain the windows to her partition. However, she only sees the constraint after the
response finally arrives from the broker. Thankfully, because of the policy hints, her

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 3, Article 17, Publication date: October 2012.



Window Brokers: Collaborative Display Space Control 17:19

window arranger reflects that she cannot drag or resize any of the other people’s
windows.

To inform clients of the current broker software, the window broker protocol
transmits two extra strings with the policy hints. The first string uniquely identifies
the class that may be used to instantiate the broker software, called a policy source.
This policy source is usually a fully qualified class name, such as those used in Java or
.NET [Thai and Lam 2002]. The runtime uses this class name to find and instantiate
that policy source via reflection. The second string is the policy version and is passed
to a single method on an instance of the policy source. The method (called getPoli-
cyEmulator) takes in the policy version and returns an instance of a policy emulator.
The policy emulator can be used to emulate the execution of the current broker’s
policy.

The policy emulator should exactly emulate the broker software. However, the bro-
ker software frequently has more information in its model than just the state of the
display server. For instance, the split space broker assigns a rectangular partition to
each participant. Although the display server can inform the policy emulators of the
chosen participants, the display server is generalized enough that it cannot inform
the emulators of the partitions. The emulators could deduce the partitions from the
current window arrangement, but if more than one client has no windows shown,
then the emulators cannot precisely deduce the partitions for all clients. The bro-
ker software must be able to expose additional state data via the display server.
The additional state data allows policy emulators to accurately emulate the broker
software.

To transmit extra state information to the clients, the display server has a generic
annotation mechanism. The broker software may attach key-value pairs of strings as
metadata to window handles or the broker handle. The broker handle is an object
exposed through the window broker API which represents the actual broker machine
and software. This handle provides clients access to the broker’s policy hints and the
name of the person who is the broker user.

When the broker software annotates a window or the broker handle, that key-value
pair is transmitted to the display server and subsequently to each of the connected
clients. To extract the annotation, each client machine’s policy emulator may then
inspect the window handles or the broker handle.

For the split space broker software to inform each client of how the display space is
divided, it serializes the array of partitions to a string and then annotates the broker
handle with that string. The display server transmits this annotation to each client,
where the software on the second user’s personal device can decode the partitions.
Now the split space emulator on the second user’s personal device has the complete
model that the broker user’s software has and can present an accurate preview of
window movements.

Exploitability. Because no code is transmitted from the broker machine to each of
the clients, the clients are protected from potential infection. In addition, the toolkits
on the client machines do not need to be designed to sandbox the broker software.

The policy emulator approach is less secure than the policy hints but more secure
than transmitting code. If there is a known exploit in a particular window broker, a
malicious display server could easily transmit the exploitable broker’s policy source
and policy version strings instead of the current window broker. Then, the server
could attempt to exploit the weak policy emulator by transmitting malicious serialized
model data.

Developers of such network-enabled software should always create code that protects
itself from such exploits. Client machines can protect themselves from exploitable

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 3, Article 17, Publication date: October 2012.



17:20 R. Arthur and D. R. Olsen, Jr.

window brokers. A well-maintained (i.e., regularly patched) client machine would have
a list of known exploitable broker sources and would prevent those sources from ever
being instantiated.

1.7. Summary

This article introduced the window broker protocol. This protocol allows a separate ma-
chine to participate in the window arrangement on a display server. In particular, users
may bring their own machine to a display server and enforce new window arrangement
rules. This flexibility provides automated, plugin-free, portable display space control.

This article also illustrates several different automated broker software implemen-
tations: presentation, discussion, split space, flatland, and moderator brokers. Each
broker is implemented in Java and demonstrates the portable, plugin-free nature of
the display space control afforded by the window broker protocol.

In addition, the window broker protocol is designed to support small devices that
may be intermittently connected to the display server. This support is implemented by
messages in the protocol which operate asynchronously.

To provide feedback for client machines which may or may not have the broker
software installed, the window broker protocol also provides policy hints. These hints
let a client machine know what broker software is being used (in case the client has
that software available for emulation), and some of the basic decisions which the broker
makes (in case the client does not have that software available).

REFERENCES

APPLE. 2010. iPhone, homepage. http://www.apple.com/iphone/. (Last accessed 10/10).
BIEHL, J. T., BAKER, W. T., BAILEY, B. P., TAN, D. S., INKPEN, K. M., AND CZERWINSKI, M. 2008. Impromptu:

A new interaction framework for supporting collaboration multiple display environments and its field
evaluation for co-located software development. In Proceedings of the 26th Annual SIGCHI Conference
on Human Factors in Computing Systems (CHI’08). 939–948.

FLANAGAN, D. 2006. JavaScript: The Definitive Guide. O’Reilly Media, Inc, Sebastopol, CA.
GOSLING, J., JOY, B., STEELE, G., AND BRACHA, G. 2000. Java Language Specification: The Java Series, 2nd Ed.

Addison-Wesley Longman Publishing, Boston, MA.
IZADI, S., BRIGNULL, H., RODDEN, T., ROGERS, Y., AND UNDERWOOD, M. 2003. Dynamo: A public interactive surface

supporting the cooperative sharing and exchange of media. In Proceedings of the 16th Annual ACM
Symposium on User Interface Software and Technol (UIST’03). 159–168.

JIANG, H., WIGDOR, D., FORLINES, C., BORKIN, M., KAUFFMANN, J., AND SHEN, C. 2008. LivOlay: Interactive ad-
hoc registration and overlapping of applications for collaborative visual exploration. In Proceedings
of the 26th Annual SIGCHI Conference on Human Factors in Computing Systems (CHI’08). 1357–
1360.

JOHANSON, B., FOX, A., AND WINOGRAD, T. 2002a. The interactive workspaces project: Experiences with ubiqui-
tous computing rooms. IEEE Pervasive Compu. 1, 2, 67–74.

JOHANSON, B., HUTCHINS, G., WINOGRAD, T., AND STONE, M. 2002b. PointRight: Experience with flexible input
redirection in interactive workspaces. In Proceedings of the 15th Annual ACM Symposium on User
interface Software and Technology (UIST’02). 227–234.

LIU, Z. 2007. Lacome: A cross-platform multi-user collaboration system for a shared large display. Computer
Science, University of British Columbia. http://hdl.handle.net/2429/378.

MICROSOFT. 2011. Windows Phone 7 Series, homepage. http://www.windowsphone7.com/. (Last accessed 6/10).
MOOCK, C. 2007. Essential Actionscript 3.0. 1st Ed. O’Reilly, Sebastopol, CA.
MYNATT, E. D., IGARASHI, T., EDWARDS, W. K., AND LAMARCA, A. 1999. Flatland: New dimensions in office

whiteboards. In Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems:
The CHI Is the Limit (CHI’99). 346–353.

RICHARDSON, T., STAFFORD-FRASER, Q., WOOD, K. R., AND HOPPER, A. 1998. Virtual Network Computing. IEEE
Internet Comput., 2, 33–38.

SCHEIFLER, R. W. AND GETTYS, J. 1986. The X window system. ACM Trans. Graphics, 5, 2, 79–109.

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 3, Article 17, Publication date: October 2012.



Window Brokers: Collaborative Display Space Control 17:21

TAN, D. S., MEYERS, B., AND CZERWINSKI, M. 2004. WinCuts: Manipulating arbitrary window regions for more
effective use of screen space. In Proceedings of the CHI’04 Extended Abstracts on Human Factors in
Computing Systems. 1525–1528.

THAI, T. L. AND LAM, H. 2002. .NET Framework Essentials 2nd Edition. O’ Reilly, Media, Sebastopol, CA.
TRITSCH, B. 2003. Microsoft Windows Server 2003 Terminal Services. Microsoft Press.

Received May 2011; revised January 2012; accepted February 2012

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 3, Article 17, Publication date: October 2012.


