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Abstract 

 
We envision a nomadic model of interaction where 

the personal computer fits in your pocket. Such a 
computer is extremely limited in screen space. A 
technique is described for “spilling” the display of a 
hand held computer onto a much larger table top 
display surface. Because our model of nomadic 
computing frequently involves the use of untrusted 
display services we restrict interactive input to the 
hand held. Navigation techniques such as scrolling or 
turning the display can be expressed through the table 
top. The orientation and position of the hand held on 
the table top is detected using three conductive feet 
that appear to the touch table like three finger touches. 
An algorithm is given for detecting the three touch 
positions from the table’s sensing mechanism.  

 
1. Introduction 

There is a great attraction to carrying a personal 
computer in your pocket. It enables a nomadic style of 
computing that is not feasible with desktop machines 
or even with laptops. There are now many hand held 
devices that are less than one cubic inch in volume and 
yet have much more storage and processor power than 
the original Macintosh. However, the user interface to 
such devices is unacceptable for many applications 
because of display size. 

The XICE project (eXtending Interactive 
Computing Everywhere) seeks to address the problem 
of very small personal computers by annexing screens 
where we find them in the world. XICE shares many 
of the goals of the Personal Server [13, 7] project as 
well as our own Join and Capture [6] system. Our 
approach stands in contrast to Pebbles [5] which uses 
hand held devices as controllers for applications 
running on other machines. In the XICE world the 
hand held computer is the personal computer and other 
devices are simply interaction servers. The advantage 
of this approach is that compatibility issues are sharply 

diminished. X-Windows [10], Virtual Network 
Computing (VNC) [8] and the web have all shown the 
compatibility advantages of standardizing interaction 
services.  
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Fig 1.  Hand held / Table top relationship 

There are two specific challenges in this vision 
that we will address in this paper. The first is the 
integration of the hand held computer with the display 
services that it has annexed. We will show how the 
display of a hand held can be “spilled” onto a table top 
display to create a Focus-Plus-Context [1] expansion 
of any hand held application. The second issue is the 
security of the hand held computer.  In a nomadic 
model of computing that uses devices encountered “in 
the wild” it is not safe to assume that such devices can 
be trusted. In this work we resolve this problem by 
performing most interaction locally within the hand 
held personal computer. We only accept navigation 
inputs, such as scrolling, from foreign devices. 
Accepting full user input from a foreign device 
essentially cedes control to that device with all of the 
accompanying dangers. Figure 1 shows the relative 
relationships between hand held personal computers 
and table top servers.  

Figure 2 shows our Spilling prototype with the 
hand held laid on the surface of a Diamond Touch 
table. In this figure the application is a spreadsheet that 
the user is scrolling by dragging their finger across the 



surface. The entire application is displayed on the table 
surface with the interactive focus of the application 
displayed on the hand held. In terms of usability we 
compare Spilling to what is possible on a hand held 
alone as opposed to what might be possible on a 
desktop computer. The table top context of Spilling 
greatly enhances the ability of a user to interact with 
the hand held. 

 
Fig 2. Hand held on table top display 

 
Fig 3. Repositioning hand held 

Spilling draws its inspiration from Focus-Plus-
Context displays [1]. The focus is on the hand held 
where the user can safely interact using the same 
interactive techniques normally used on the hand held. 
The context is provided by the table top display with a 
touch sensitive surface providing a mechanism to 
scroll information into the focus region. The idea is 
that this is a hand held computer that behaves as it 
always did, but it has been supplemented by this large 
table top display. Unlike Focus-Plus-Context which 
has a rather rigid configuration, the user can move the 
hand held around the surface and position it in 
whatever place is comfortable to work. Figure 3 shows 

the user rotating the hand held to work more 
comfortably on a “sticky note” application for 
organizing ideas. This would be similar to tipping a 
sheet of paper in order to write more comfortably. 

When the hand held moves, the work moves with 
it. When the user scrolls with their finger the work 
moves beneath the hand held. This is different from 
Ubiquitous Graphics [9] where the wall display is 
fixed with the smaller device moving relative to it. 
This fixed-world approach is also found in Peepholes 
[15] where the hand held device is moved relative to a 
large fixed display that is only shown through the hand 
held device providing no peripheral context. The 
problem with fixed-world display models is that the 
user can be forced to work in awkward physical 
positions, such as the extreme top of the display. In 
Spilling the user can move the work to where it is most 
comfortable regardless of the physical size of the 
contextual display. This hand held centric approach 
also allows the user to rotate the hand held so that the 
display can be seen by someone across the table as in 
DiamondSpin [11].  

In the remainder of this paper we will address 
Spilling’s architectural and security issues. First issue 
is distributing the display from the hand held to the 
table top. This is mostly handled by the XICE 
architecture. The second issue is the geometry 
synchronization between the hand held and the table 
top. Third there is the problem of sensing the location 
and orientation of the hand held personal computer. 
Lastly the UI security threats are addressed. 

2. XICE Architecture 

The full XICE architecture is beyond the scope of 
this paper. What are presented here are the essentials 
for implementing Spilling.  The goal of XICE is to 
explore the software architectures that can make highly 
nomadic computing possible without sacrificing 
display or interactive capabilities. Because we wanted 
to rethink mobile interaction architectures we have 
abandoned any support for legacy software. We feel 
that nomadic computing is compelling enough to 
warrant rewriting applications to a new platform. 
Using XICE we have implemented a text editor, a 
“sticky notes” idea organizer, a presentation tool (like 
PowerPoint), a drawing application, and a spreadsheet 
as well as the games of checkers, tic-tac-toe and Risk. 
These give us a rich application base for exploring 
architecture ideas. 



XICE applications are organized around sheets, 
which are similar to traditional windows. A sheet is 
either local or remote. A local sheet is drawn on the 
screen of the same computer where the application is 
running. A remote sheet is drawn on some machine 
that is accessed over the Internet.  

Associated with each sheet is a presentation tree 
that represents everything to be drawn on that sheet. 
These presentation trees are like the scene graphs in 
3D systems and the drawing architecture of Piccolo 
[2]. Rather than implementing the damage/redraw 
technique of most interactive graphics, XICE 
applications interact by modifying the presentation 
tree. Tree modifications propagate up the tree to the 
sheet. If the sheet is local then XICE handles the 
necessary damage/redraw activity to get the screen 
redrawn. If the sheet is remote then presentation tree 
changes are serialized to the remote machine where 
they are used to update a copy of the presentation tree. 
That copy is then redrawn on the remote display In 
Spilling all Internet access is via a wireless 802.11g 
connection from the hand held. The change 
propagation and serialization algorithms are beyond 
the scope of this paper. The key feature is that 
modifications to a transformation require just a few 
bytes of network traffic to modify the corresponding 
remote transformation node rather than the traffic for 
the complete redraw required in X or VNC.  Since 
most of Spilling is transformation modification this 
makes the whole technique very network-friendly. The 
distribution of presentation trees is hidden from and 
irrelevant to XICE applications.  

There are two points in the XICE drawing model 
that are key to the Spilling implementation. As in 3D 
scene graphs some interior nodes in a presentation tree 
can be geometric transformations (scale, rotate, 
translate or any combination). A transformation node 
modifies the way in which all of its children are drawn. 
A second feature is that all drawing is defined in View 
Independent Coordinates (VICs). VICs are defined to 
deal both with differing screen resolutions and with 
differing viewing distances. The informal definition is 
that readable text should be at least 10 VICs high. The 
scaling of VICs to actual pixels is handled deep in 
XICE where the actual display configuration is known. 
For each display XICE is configured with the 
parameters pixels per inch and viewing distance in 
inches. From this the VICs-to-pixels scaling is 
computed. This will be important in coordinating table 
geometry with hand held geometry. 

Figure 4 shows how Spilling is implemented in the 
XICE architecture. At the heart of the implementation 
is the application’s presentation tree. This embodies 
everything that is to be drawn in the application as well 
as its input event processing. Directly above the 
application’s tree is the scrolling transformation node 
S. This node positions the application work in response 
to the user’s dragging with their fingers.  Above the S 
node is a special multi-parent node that is responsible 
for synchronizing the hand held display with the table 
top display.  
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Fig 4: Spilling’s XICE implementation 

Also above the multi-parent node is the 
transformation node P that manages the position and 
orientation of the hand held. The node P is connected 
to the remote sheet for the table top context. This 
remote context sheet synchronizes over the Internet 
with the table top display’s version of the presentation 
tree. The entire application is presented to the hand 
held, where most is clipped away, and also to the table 
top, where a more global view of the application 
appears. As figure 4 shows, almost everything about 
the application and its relationship to Spilling is 
contained in the hand held. The only part that is 
controlled by the foreign table top server is a copy of 
the presentation tree and the scrolling/positioning 
inputs. 

When a change is made to the presentation tree by 
the application it is propagated up the tree to the multi-
parent node. The multi-parent node sends the change 
notification both to the hand held’s sheet and to node P 
where it is propagated to the context sheet and 



serialized to the table top display service. Both the 
hand held and the table top have presentation trees that 
reflect the current visual state of the application. 

When the hand held needs to redraw its sheet for 
whatever reason it recursively traverses the tree down 
through the multi-parent node, bypassing node P but 
passing through node S. The position of the hand held 
on the table top has no effect on what should be drawn 
on the hand held. When the context-sheet is serializing 
it does pass through transformation P so that the hand 
held’s position is taken into account when drawing on 
the table top. 

The multi-parent node makes the whole display 
structure technically a directed-acyclic graph. 
However, the multi-parent node localizes the non-tree 
behavior that is required to get different displays 
drawn in different places without the application 
knowing about the duplication. The application is 
oblivious to the existence of the Spilling 
implementation above it in the tree. When the user 
interacts with the application itself through the hand 
held, all input events are distributed downward and 
transformed by S-1 before being sent to the application 
for processing. The scrolling of the display performed 
by Spilling is thus invisible to the application. 

3. Table top interaction 

When the user moves the hand held, as shown in 
figures 3 and 5, its location and orientation must be 
sensed by the table top server. This location and 
orientation is sent back across the Internet to the 
context sheet and transformation node P is modified 
appropriately as shown in figure 5. This change to P is 
serialized and returned to the table top display server 
which causes the table top display to update. 

 
Fig 5. Changing hand held position 

When the user scrolls the work under the hand 
held as shown in figure 2 a translation is sensed by the 
table top server. The change between the start and end 

points of the scroll is sent to the hand held and is 
propagated from the context sheet down through P-1 
and used to modify transformation S as shown in 
figure 6. This change to transformation S is below the 
multi-parent node. Thus its modification is propagated 
to both the hand held sheet for redrawing and to the 
context sheet for serialization to the table top. XICE’s 
parsimonious network usage makes these changes 
much more efficient than VNC or X. In neither of 
these table top interactions has the presentation of the 
application been sent over the network. That would 
only happen if the application itself changed its 
presentation tree and then only the relevant changes 
would be sent. This allows spilling to move both 
displays at interactive speeds. 
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Fig 6. Finger scrolling 

4. Table top technology 

The table top server needs to support three tasks: 
display, scroll sensing and hand held position sensing. 
Display can either come from below or above. Display 
from below has many advantages in terms of 
installation, occlusion and elimination of shadows. 
Spilling is largely agnostic about the display choice 
except that dragging a hand held across a transparent 
screen may lead to excessive scratching. Projection 
from above would not have the scratching problem, 
but does create shadows. 

P 

S 

Internet

Users might express scrolling using either a finger 
or a stylus.  For a stylus-based technique a tablet is 
perfectly adequate. However, for scrolling we do not 
need the precision of a stylus and we would prefer not 
to incur the usability burden of finding and 
manipulating a stylus. Fingers rarely get lost. 

The key sensing requirement is the location and 
orientation of the hand held computer. For this there 
are several competing technologies: cameras, 
structured light, pen tablets and the Diamond Touch. It 
would be possible to place fiducial marks on the back 



of the hand held computer so that a camera from below 
could sense the location and position. Two unique 
marks would clearly identify the location and 
orientation of the device. Camera from below poses the 
same surface wear problems as projection from below. 
However, fiducial marks can readily be painted or 
stuck on the bottom of the hand held to provide the 
necessary two points. PlayAnywhere [14] describes a 
set of such fiducial marks. Camera-from-below is a 
strong candidate for Spilling. 

It is possible to place fiducial marks on the top of 
the hand held and put a camera above to sense the 
necessary three points. PlayAnywhere demonstrated 
that an oblique camera angle can be effective with little 
interference. However a quick glance at figure 3 shows 
that most fiducial marks would be obscured by the 
user’s hand at exactly the time when we want to sense 
the hand held position. Camera from above would not 
be a good choice. 

A structured light solution is also possible such as 
that proposed by Lee, et. al. [4]. This would require 
light sensors at the corners of the hand held device that 
could sense the position from the projected light 
signature. There are several problems here. The 
sensors must be manufactured into the hand held 
device which would make it more expensive and 
require a lot of cooperation between table top and hand 
held manufacturers. Structured light would interfere 
with the table top projection unless infra-red was used. 
Lastly the hand would obscure the sensors just as with 
top-side fiducial marks. 

Ubiquitous Graphics [9] uses acoustic pen 
technology to sense the location of the focus display. 
Again this requires the manufacturers of hand held 
devices to include special hardware. The ultrasonic 
emitters are also large enough to add significant bulk 
to the hand held. 

It would also be possible to use Wacom [12] tablet 
technology for sensing location and orientation. 
Embedding Wacom stylus hardware in the hand held 
would provide the necessary input. The passive stylus 
hardware could also be constructed as a “stick on” that 
could be attached to any hand held. This would 
provide an effective and accurate mechanism that 
would work on any of Wacom’s tablet displays.  

Our Spilling prototype uses the Diamond Touch 
table [3] as its sensing device. It has a wear resistant 
surface coupled with very simple user devices 
(fingers). Scrolling is easy by sensing the movement of 

a finger on the touch surface. The sensing of the hand 
held is more problematic. The Diamond Touch 
functions by sensing capacitance changes from users 
sitting on a conductive pad. If the chair pad causes 
installation difficulties we have placed it at the edge of 
the Diamond Touch table where it can be touched with 
the non-dominant hand. 

Conductive Insulated Foot

 
Fig 7. VAIO prototype with conductive feet 

In figure 7 we show a conductive frame which we 
have attached to a Sony VAIO-UX hand held 
computer. When the user grasps the frame it becomes 
part of the Diamond Touch sensing circuit for that 
user. The result is that the three conductive feet appear 
to the Diamond Touch as if three of the user’s fingers 
were touching the surface. In a real product the hand 
held’s case would be conductive with one 
nonconductive and three conductive feet on the back. 
This would be inexpensive to manufacture into a hand 
held device. The VAIO is larger than we envision for 
most hand helds, but it was much simpler to program 
for this prototype. 

5. Detecting hand held position/orientation 

The remaining challenge is to locate the three 
conductive feet from the VAIO and convert their 
locations into the translation and rotation 
transformation P. The Diamond Touch is a projective 
sensing device. The locations of the touches are not 
sensed directly, rather a histogram of touch strength is 
produced for the individual X and Y coordinates. For a 
single touch the high points in the X and Y histograms 
are detected and the touch location is known. 
Projective sensing is not unique to the Diamond 
Touch. Most tablets are projection sensed through 
vertical and horizontal wires. Many IR-based optical 
tablets are also projection sensed. Projection sensing is 
economical because its cost grows with the perimeter 
length rather than the area of a sensing surface.  



Projective sensing works great for single points, 
but it leads to ambiguity when sensing multiple points. 
For sensing the hand held’s size, location and 
orientation we need to sense three unique points. 
However, the X, Y projections of those points are not 
unique. We resolve this using three techniques: 1) a 
known starting orientation, 2) the rigid configuration 
of the hand held’s three conductive points and 3) 
continuity of motion. 

Figure 8 shows the 4 possible sensing cases that 
must be considered in resolving the X, Y projections 
into the positions of 3 points on the handheld. Each 
case is identified by the number of peaks in each of X 
and Y. There are several variations of each of these 
cases. The numbered points for Case 1 indicate the 
identity of the three conductive feet on the bottom of 
the handheld device.  

 
Fig 8. Cases for projection of 3 points 

There is underlying software that examines the 
histograms from the Diamond Touch hardware and 
identifies the peaks that correspond to touches on the 
surface of the table. This histogram analysis layer 
returns the positions of 1, 2 or 3 peaks in each of X 
and Y. For the handheld device there are always 2 or 3 
peaks in each of X and Y. 

5.1. Case 1 

Case 1 shows as 2 peaks in X and 2 in Y. Case 1 is 
the most ambiguous alignment and also the position 
for the hand held when the system is initialized. In the 
initial position the locations of feet 0, 1 and 2 are 
easily derived from the histogram information. From 
this position the width and height of the handheld can 
also be measured. It is essential that the device not be 
square. Having a distinct difference between width and 
height is critical in resolving the point positions in the 
other cases.  
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Fig 9. Variations on Case 1 

Case 1 not only applies to the initial position, but 
also four other variations as shown in figure 9. Each of 
these shows as 2 peaks in each of X and Y and might 
occur in the course of the user moving the handheld 
around. Variations a and b can be distinguished from c 
and d by the known width and height of the handheld. 
Further ambiguity (a vs. b, or c vs. d) can be resolved 
by storing the previous position of foot 0 and the 
previous orientation angle. Knowing the previous 
position of foot 0 and the orientation angle we can pick 
the closest alignment to the previous position.  

Case 1 Case 2 

Case 3 Case 4 

0 1 

2 

5.2. Resolving ambiguity 

The rigid dimensions of the hand held resolve 
most of the ambiguity problems. The remaining 
problems we handle by continuity of motion. As the 
user drags the hand held around the surface as well as 
rotates it, the position and orientation at time t is very 
similar to time t-1. In general we find orientation a 
stronger predictor than position, but we use both for 
more robust performance.  

For a single user scenario there are only a few 
orientations that make sense. It is unlikely that a user 
will frequently want to turn the work upside down. In 
the single user case continuity of orientation works 
quite well. In a multi-user scenario more drastic 
rotations occur when sharing the work with someone 
seated at a different position. Continuity of motion still 
works in this scenario, but there are cases where it 
breaks. In a multi-user scenario, the Diamond Touch 
can sense each user individually. A default orientation 
range could be associated with each user. The active 
user would grasp the frame and ambiguity would be 
resolved using the identity of that user. 

In our usage, continuity of motion has worked 
well. There are two failure cases. The first is if the user 
moves very fast so that the orientation between time t 
and time t-1 is very different. This problem is readily 
resolved by processing of the points so that the 
sampling rate exceeds human hand speed. A more 
fundamental problem is when the user picks up the 
hand held (eliminating sensory contact) and then puts 



it down in a very different location and orientation. 
This is resolved through user instruction.  

“If you pick it up rather than slide it, it may get 
confused.” 

“If it gets confused, pick it up, put it down in 
alignment with the image and then slide from 
there.” 

In our experience users had no difficulty in 
understanding the correct way to use the device and 
the work flow was not impeded. 

5.3. Cases 2, 3 and 4 

Cases 2, 3 and 4 all have a similar treatment. A 
discussion of case 4 will illustrate what is necessary. 
Given the 3 peaks in X and the two peaks in Y, in case 
4, there are six possible locations for a conductive foot, 
as shown in figure 11. There are 120 possible 
assignments of the possible points to the three 
conductive feet. However, only a few of these 
possibilities will explain all of the data. Each foot must 
be assigned to a different X peak or one of the X peaks 
will be unexplained. Similarly both Y peaks must be 
used. For example, the combination a, b and d would 
leave the third X peak unexplained and therefore is not 
a valid combination.  

 
Fig 11. Points derived from X, Y peaks 

For case 4 there are 6 possible point/foot 
assignments that use all of the histogram peaks. Given 
one of these possible assignments, we can test to see if 
the assignment is consistent with the known width and 
height of the handheld device. The distance between 
foot 0 and foot 1 must be equal to the handheld width. 
The distance between foot 1 and foot 2 must be equal 
to the height. This check will eliminate all but one 
possible configuration in cases 3 and 4. In some 
situations case 2 can have multiple configurations that 
are consistent with the data. The final ambiguity of 
case 2 is resolved using continuity of motion. 

6. Display alignment 

The handheld display and the context display on 
the touch table need to correspond in size and location. 
In XICE all coordinates are specified in view 
independent coordinates (VIC). When a display device 
is configured its pixels per inch are specified as well as 
the preferred viewing distance. This configuration 
information is sufficient to convert VICs into pixels. If 
the handheld and the touch table projector have their 
pixels per inch set correctly and have the same viewing 
distance then their coordinate systems are 
automatically consistent when application information 
is drawn in VICs. There are other systems besides 
XICE that account for variations in pixels per inch, but 
the viewing distance is also critical in this focus plus 
context technique. The resolution of the Diamond 
Touch for sensing the conductive feet can lead to some 
misalignment between the hand held and the table top. 
However, the hand held bezel provides enough of a 
break in visual continuity that this is not noticeable. 

7. User experience 

We have not done formal usability studies on 
Spilling. We have, however, learned some things by 
watching people try to use the system. 

Our first observation was that fixed location 
widgets are problematic when interacting with a 
Spilling table. Using the non-dominant hand users 
freely scroll around their workspace. However, items 
like menus and tool bars that are at fixed locations 
require that the user scroll away from their work 
context to bring such widgets into the focus region of 
the hand held. The user must then scroll back to the 
original work area. This is very awkward. Similar 
problems have been noted with very large displays 
where substantial effort is required to move from a 
work location to some distant widget group. We have 
dealt with this problem by providing access to all 
widget actions through pop-ups at the work site.  
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A second issue is interactions that require 
dragging across a distance larger than the hand held’s 
display size. At first we believed that this was 
something that just could not be done. That did not 
concern us because such techniques are very difficult 
with hand helds anyway. However, users quickly 
learned to hold the dragged item in the hand held view 
and then simultaneously scroll the work with the non-
dominant hand. Once a user has seen the technique it 
works very well and is much better than trying to do 
the same thing on the hand held alone. The fact that the 



hand held, with larger mass and sliding friction, holds 
still while the work is moved is also more effective 
than dragging by moving the hand held as in 
Ubiquitous Graphics or Peepholes. 

8. User interface security threats 

We do not presume to deal with all possible 
security threats to network-connected computers. 
However, we have tried to avoid introducing any new 
threats when distributing the user interface to foreign 
machines. In Spilling there are three security threats in 
the user interface. The first and most dangerous is the 
acceptance of input from untrusted machines. Spilling 
resolves this by only accepting scrolling information 
and by isolating that input from the application, as 
shown in figure 1. The second is that a table top 
display server has access to all of the information 
being presented on the table. This threat is 
fundamental to distributed UI architectures and cannot 
be removed. Any information displayed by a computer 
for humans to see can be stolen by the display 
computer.  

There is one more subtle UI attack that is possible. 
A rogue table could lie about scrolling information and 
about the context while scrolling a different part of the 
application under the hand held and thus deceiving the 
user about where their input is going. The table top 
cannot introduce any new interaction to the hand held, 
it can only scroll existing elements around. For such a 
threat to succeed there would need to be a deep 
understanding of the application by the table top and 
an application so designed that the user could be 
deceived by the context. This is a very obscure threat 
that is easily thwarted by appropriate application 
design. 

9. Summary 

We have created an architecture where users can 
bring hand held devices with small screens to a table 
top display and “spill” their user interface onto the 
table. The table provides a large context to the normal 
interactions of the hand held device. We have also 
shown how the hand held and the table can be visually 
synchronized. Lastly we have presented an algorithm 
for sensing hand held position and orientation through 
a projective sensing devices such as the Diamond 
Touch. 
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