
Spilling: Expanding Hand held Interaction to Touch Table Displays

Dan R. Olsen Jr., Jeffrey Clement, Aaron Pace
Computer Science Department, Brigham Young University

olsen@cs.byu.edu

Abstract

We envision a nomadic model of interaction where

the personal computer fits in your pocket. Such a
computer is extremely limited in screen space. A
technique is described for “spilling” the display of a
hand held computer onto a much larger table top
display surface. Because our model of nomadic
computing frequently involves the use of untrusted
display services we restrict interactive input to the
hand held. Navigation techniques such as scrolling or
turning the display can be expressed through the table
top. The orientation and position of the hand held on
the table top is detected using three conductive feet
that appear to the touch table like three finger touches.
An algorithm is given for detecting the three touch
positions from the table’s sensing mechanism.

1. Introduction

There is a great attraction to carrying a personal
computer in your pocket. It enables a nomadic style of
computing that is not feasible with desktop machines
or even with laptops. There are now many hand held
devices that are less than one cubic inch in volume and
yet have much more storage and processor power than
the original Macintosh. However, the user interface to
such devices is unacceptable for many applications
because of display size.

The XICE project (eXtending Interactive
Computing Everywhere) seeks to address the problem
of very small personal computers by annexing screens
where we find them in the world. XICE shares many
of the goals of the Personal Server [13, 7] project as
well as our own Join and Capture [6] system. Our
approach stands in contrast to Pebbles [5] which uses
hand held devices as controllers for applications
running on other machines. In the XICE world the
hand held computer is the personal computer and other
devices are simply interaction servers. The advantage
of this approach is that compatibility issues are sharply

diminished. X-Windows [10], Virtual Network
Computing (VNC) [8] and the web have all shown the
compatibility advantages of standardizing interaction
services.

Hand held
Applications
Data
User Input

Table top
server
Display
Scrolling
Hand held

i i

Display
information

Scrolling and
positioning

Editing
Input

Fig 1. Hand held / Table top relationship

There are two specific challenges in this vision
that we will address in this paper. The first is the
integration of the hand held computer with the display
services that it has annexed. We will show how the
display of a hand held can be “spilled” onto a table top
display to create a Focus-Plus-Context [1] expansion
of any hand held application. The second issue is the
security of the hand held computer. In a nomadic
model of computing that uses devices encountered “in
the wild” it is not safe to assume that such devices can
be trusted. In this work we resolve this problem by
performing most interaction locally within the hand
held personal computer. We only accept navigation
inputs, such as scrolling, from foreign devices.
Accepting full user input from a foreign device
essentially cedes control to that device with all of the
accompanying dangers. Figure 1 shows the relative
relationships between hand held personal computers
and table top servers.

Figure 2 shows our Spilling prototype with the
hand held laid on the surface of a Diamond Touch
table. In this figure the application is a spreadsheet that
the user is scrolling by dragging their finger across the

surface. The entire application is displayed on the table
surface with the interactive focus of the application
displayed on the hand held. In terms of usability we
compare Spilling to what is possible on a hand held
alone as opposed to what might be possible on a
desktop computer. The table top context of Spilling
greatly enhances the ability of a user to interact with
the hand held.

Fig 2. Hand held on table top display

Fig 3. Repositioning hand held

Spilling draws its inspiration from Focus-Plus-
Context displays [1]. The focus is on the hand held
where the user can safely interact using the same
interactive techniques normally used on the hand held.
The context is provided by the table top display with a
touch sensitive surface providing a mechanism to
scroll information into the focus region. The idea is
that this is a hand held computer that behaves as it
always did, but it has been supplemented by this large
table top display. Unlike Focus-Plus-Context which
has a rather rigid configuration, the user can move the
hand held around the surface and position it in
whatever place is comfortable to work. Figure 3 shows

the user rotating the hand held to work more
comfortably on a “sticky note” application for
organizing ideas. This would be similar to tipping a
sheet of paper in order to write more comfortably.

When the hand held moves, the work moves with
it. When the user scrolls with their finger the work
moves beneath the hand held. This is different from
Ubiquitous Graphics [9] where the wall display is
fixed with the smaller device moving relative to it.
This fixed-world approach is also found in Peepholes
[15] where the hand held device is moved relative to a
large fixed display that is only shown through the hand
held device providing no peripheral context. The
problem with fixed-world display models is that the
user can be forced to work in awkward physical
positions, such as the extreme top of the display. In
Spilling the user can move the work to where it is most
comfortable regardless of the physical size of the
contextual display. This hand held centric approach
also allows the user to rotate the hand held so that the
display can be seen by someone across the table as in
DiamondSpin [11].

In the remainder of this paper we will address
Spilling’s architectural and security issues. First issue
is distributing the display from the hand held to the
table top. This is mostly handled by the XICE
architecture. The second issue is the geometry
synchronization between the hand held and the table
top. Third there is the problem of sensing the location
and orientation of the hand held personal computer.
Lastly the UI security threats are addressed.

2. XICE Architecture

The full XICE architecture is beyond the scope of
this paper. What are presented here are the essentials
for implementing Spilling. The goal of XICE is to
explore the software architectures that can make highly
nomadic computing possible without sacrificing
display or interactive capabilities. Because we wanted
to rethink mobile interaction architectures we have
abandoned any support for legacy software. We feel
that nomadic computing is compelling enough to
warrant rewriting applications to a new platform.
Using XICE we have implemented a text editor, a
“sticky notes” idea organizer, a presentation tool (like
PowerPoint), a drawing application, and a spreadsheet
as well as the games of checkers, tic-tac-toe and Risk.
These give us a rich application base for exploring
architecture ideas.

XICE applications are organized around sheets,
which are similar to traditional windows. A sheet is
either local or remote. A local sheet is drawn on the
screen of the same computer where the application is
running. A remote sheet is drawn on some machine
that is accessed over the Internet.

Associated with each sheet is a presentation tree
that represents everything to be drawn on that sheet.
These presentation trees are like the scene graphs in
3D systems and the drawing architecture of Piccolo
[2]. Rather than implementing the damage/redraw
technique of most interactive graphics, XICE
applications interact by modifying the presentation
tree. Tree modifications propagate up the tree to the
sheet. If the sheet is local then XICE handles the
necessary damage/redraw activity to get the screen
redrawn. If the sheet is remote then presentation tree
changes are serialized to the remote machine where
they are used to update a copy of the presentation tree.
That copy is then redrawn on the remote display In
Spilling all Internet access is via a wireless 802.11g
connection from the hand held. The change
propagation and serialization algorithms are beyond
the scope of this paper. The key feature is that
modifications to a transformation require just a few
bytes of network traffic to modify the corresponding
remote transformation node rather than the traffic for
the complete redraw required in X or VNC. Since
most of Spilling is transformation modification this
makes the whole technique very network-friendly. The
distribution of presentation trees is hidden from and
irrelevant to XICE applications.

There are two points in the XICE drawing model
that are key to the Spilling implementation. As in 3D
scene graphs some interior nodes in a presentation tree
can be geometric transformations (scale, rotate,
translate or any combination). A transformation node
modifies the way in which all of its children are drawn.
A second feature is that all drawing is defined in View
Independent Coordinates (VICs). VICs are defined to
deal both with differing screen resolutions and with
differing viewing distances. The informal definition is
that readable text should be at least 10 VICs high. The
scaling of VICs to actual pixels is handled deep in
XICE where the actual display configuration is known.
For each display XICE is configured with the
parameters pixels per inch and viewing distance in
inches. From this the VICs-to-pixels scaling is
computed. This will be important in coordinating table
geometry with hand held geometry.

Figure 4 shows how Spilling is implemented in the
XICE architecture. At the heart of the implementation
is the application’s presentation tree. This embodies
everything that is to be drawn in the application as well
as its input event processing. Directly above the
application’s tree is the scrolling transformation node
S. This node positions the application work in response
to the user’s dragging with their fingers. Above the S
node is a special multi-parent node that is responsible
for synchronizing the hand held display with the table
top display.

Handheld
Sheet

Context
Sheet

P

S Application
Presentation Tree

Internet

Multiparent

Fig 4: Spilling’s XICE implementation

Also above the multi-parent node is the
transformation node P that manages the position and
orientation of the hand held. The node P is connected
to the remote sheet for the table top context. This
remote context sheet synchronizes over the Internet
with the table top display’s version of the presentation
tree. The entire application is presented to the hand
held, where most is clipped away, and also to the table
top, where a more global view of the application
appears. As figure 4 shows, almost everything about
the application and its relationship to Spilling is
contained in the hand held. The only part that is
controlled by the foreign table top server is a copy of
the presentation tree and the scrolling/positioning
inputs.

When a change is made to the presentation tree by
the application it is propagated up the tree to the multi-
parent node. The multi-parent node sends the change
notification both to the hand held’s sheet and to node P
where it is propagated to the context sheet and

serialized to the table top display service. Both the
hand held and the table top have presentation trees that
reflect the current visual state of the application.

When the hand held needs to redraw its sheet for
whatever reason it recursively traverses the tree down
through the multi-parent node, bypassing node P but
passing through node S. The position of the hand held
on the table top has no effect on what should be drawn
on the hand held. When the context-sheet is serializing
it does pass through transformation P so that the hand
held’s position is taken into account when drawing on
the table top.

The multi-parent node makes the whole display
structure technically a directed-acyclic graph.
However, the multi-parent node localizes the non-tree
behavior that is required to get different displays
drawn in different places without the application
knowing about the duplication. The application is
oblivious to the existence of the Spilling
implementation above it in the tree. When the user
interacts with the application itself through the hand
held, all input events are distributed downward and
transformed by S-1 before being sent to the application
for processing. The scrolling of the display performed
by Spilling is thus invisible to the application.

3. Table top interaction

When the user moves the hand held, as shown in
figures 3 and 5, its location and orientation must be
sensed by the table top server. This location and
orientation is sent back across the Internet to the
context sheet and transformation node P is modified
appropriately as shown in figure 5. This change to P is
serialized and returned to the table top display server
which causes the table top display to update.

Fig 5. Changing hand held position

When the user scrolls the work under the hand
held as shown in figure 2 a translation is sensed by the
table top server. The change between the start and end

points of the scroll is sent to the hand held and is
propagated from the context sheet down through P-1
and used to modify transformation S as shown in
figure 6. This change to transformation S is below the
multi-parent node. Thus its modification is propagated
to both the hand held sheet for redrawing and to the
context sheet for serialization to the table top. XICE’s
parsimonious network usage makes these changes
much more efficient than VNC or X. In neither of
these table top interactions has the presentation of the
application been sent over the network. That would
only happen if the application itself changed its
presentation tree and then only the relevant changes
would be sent. This allows spilling to move both
displays at interactive speeds.

S

P-1

Internet

Fig 6. Finger scrolling

4. Table top technology

The table top server needs to support three tasks:
display, scroll sensing and hand held position sensing.
Display can either come from below or above. Display
from below has many advantages in terms of
installation, occlusion and elimination of shadows.
Spilling is largely agnostic about the display choice
except that dragging a hand held across a transparent
screen may lead to excessive scratching. Projection
from above would not have the scratching problem,
but does create shadows.

P

S

Internet

Users might express scrolling using either a finger
or a stylus. For a stylus-based technique a tablet is
perfectly adequate. However, for scrolling we do not
need the precision of a stylus and we would prefer not
to incur the usability burden of finding and
manipulating a stylus. Fingers rarely get lost.

The key sensing requirement is the location and
orientation of the hand held computer. For this there
are several competing technologies: cameras,
structured light, pen tablets and the Diamond Touch. It
would be possible to place fiducial marks on the back

of the hand held computer so that a camera from below
could sense the location and position. Two unique
marks would clearly identify the location and
orientation of the device. Camera from below poses the
same surface wear problems as projection from below.
However, fiducial marks can readily be painted or
stuck on the bottom of the hand held to provide the
necessary two points. PlayAnywhere [14] describes a
set of such fiducial marks. Camera-from-below is a
strong candidate for Spilling.

It is possible to place fiducial marks on the top of
the hand held and put a camera above to sense the
necessary three points. PlayAnywhere demonstrated
that an oblique camera angle can be effective with little
interference. However a quick glance at figure 3 shows
that most fiducial marks would be obscured by the
user’s hand at exactly the time when we want to sense
the hand held position. Camera from above would not
be a good choice.

A structured light solution is also possible such as
that proposed by Lee, et. al. [4]. This would require
light sensors at the corners of the hand held device that
could sense the position from the projected light
signature. There are several problems here. The
sensors must be manufactured into the hand held
device which would make it more expensive and
require a lot of cooperation between table top and hand
held manufacturers. Structured light would interfere
with the table top projection unless infra-red was used.
Lastly the hand would obscure the sensors just as with
top-side fiducial marks.

Ubiquitous Graphics [9] uses acoustic pen
technology to sense the location of the focus display.
Again this requires the manufacturers of hand held
devices to include special hardware. The ultrasonic
emitters are also large enough to add significant bulk
to the hand held.

It would also be possible to use Wacom [12] tablet
technology for sensing location and orientation.
Embedding Wacom stylus hardware in the hand held
would provide the necessary input. The passive stylus
hardware could also be constructed as a “stick on” that
could be attached to any hand held. This would
provide an effective and accurate mechanism that
would work on any of Wacom’s tablet displays.

Our Spilling prototype uses the Diamond Touch
table [3] as its sensing device. It has a wear resistant
surface coupled with very simple user devices
(fingers). Scrolling is easy by sensing the movement of

a finger on the touch surface. The sensing of the hand
held is more problematic. The Diamond Touch
functions by sensing capacitance changes from users
sitting on a conductive pad. If the chair pad causes
installation difficulties we have placed it at the edge of
the Diamond Touch table where it can be touched with
the non-dominant hand.

Conductive Insulated Foot

Fig 7. VAIO prototype with conductive feet

In figure 7 we show a conductive frame which we
have attached to a Sony VAIO-UX hand held
computer. When the user grasps the frame it becomes
part of the Diamond Touch sensing circuit for that
user. The result is that the three conductive feet appear
to the Diamond Touch as if three of the user’s fingers
were touching the surface. In a real product the hand
held’s case would be conductive with one
nonconductive and three conductive feet on the back.
This would be inexpensive to manufacture into a hand
held device. The VAIO is larger than we envision for
most hand helds, but it was much simpler to program
for this prototype.

5. Detecting hand held position/orientation

The remaining challenge is to locate the three
conductive feet from the VAIO and convert their
locations into the translation and rotation
transformation P. The Diamond Touch is a projective
sensing device. The locations of the touches are not
sensed directly, rather a histogram of touch strength is
produced for the individual X and Y coordinates. For a
single touch the high points in the X and Y histograms
are detected and the touch location is known.
Projective sensing is not unique to the Diamond
Touch. Most tablets are projection sensed through
vertical and horizontal wires. Many IR-based optical
tablets are also projection sensed. Projection sensing is
economical because its cost grows with the perimeter
length rather than the area of a sensing surface.

Projective sensing works great for single points,
but it leads to ambiguity when sensing multiple points.
For sensing the hand held’s size, location and
orientation we need to sense three unique points.
However, the X, Y projections of those points are not
unique. We resolve this using three techniques: 1) a
known starting orientation, 2) the rigid configuration
of the hand held’s three conductive points and 3)
continuity of motion.

Figure 8 shows the 4 possible sensing cases that
must be considered in resolving the X, Y projections
into the positions of 3 points on the handheld. Each
case is identified by the number of peaks in each of X
and Y. There are several variations of each of these
cases. The numbered points for Case 1 indicate the
identity of the three conductive feet on the bottom of
the handheld device.

Fig 8. Cases for projection of 3 points

There is underlying software that examines the
histograms from the Diamond Touch hardware and
identifies the peaks that correspond to touches on the
surface of the table. This histogram analysis layer
returns the positions of 1, 2 or 3 peaks in each of X
and Y. For the handheld device there are always 2 or 3
peaks in each of X and Y.

5.1. Case 1

Case 1 shows as 2 peaks in X and 2 in Y. Case 1 is
the most ambiguous alignment and also the position
for the hand held when the system is initialized. In the
initial position the locations of feet 0, 1 and 2 are
easily derived from the histogram information. From
this position the width and height of the handheld can
also be measured. It is essential that the device not be
square. Having a distinct difference between width and
height is critical in resolving the point positions in the
other cases.

a b c d

Fig 9. Variations on Case 1

Case 1 not only applies to the initial position, but
also four other variations as shown in figure 9. Each of
these shows as 2 peaks in each of X and Y and might
occur in the course of the user moving the handheld
around. Variations a and b can be distinguished from c
and d by the known width and height of the handheld.
Further ambiguity (a vs. b, or c vs. d) can be resolved
by storing the previous position of foot 0 and the
previous orientation angle. Knowing the previous
position of foot 0 and the orientation angle we can pick
the closest alignment to the previous position.

Case 1 Case 2

Case 3 Case 4

0 1

2

5.2. Resolving ambiguity

The rigid dimensions of the hand held resolve
most of the ambiguity problems. The remaining
problems we handle by continuity of motion. As the
user drags the hand held around the surface as well as
rotates it, the position and orientation at time t is very
similar to time t-1. In general we find orientation a
stronger predictor than position, but we use both for
more robust performance.

For a single user scenario there are only a few
orientations that make sense. It is unlikely that a user
will frequently want to turn the work upside down. In
the single user case continuity of orientation works
quite well. In a multi-user scenario more drastic
rotations occur when sharing the work with someone
seated at a different position. Continuity of motion still
works in this scenario, but there are cases where it
breaks. In a multi-user scenario, the Diamond Touch
can sense each user individually. A default orientation
range could be associated with each user. The active
user would grasp the frame and ambiguity would be
resolved using the identity of that user.

In our usage, continuity of motion has worked
well. There are two failure cases. The first is if the user
moves very fast so that the orientation between time t
and time t-1 is very different. This problem is readily
resolved by processing of the points so that the
sampling rate exceeds human hand speed. A more
fundamental problem is when the user picks up the
hand held (eliminating sensory contact) and then puts

it down in a very different location and orientation.
This is resolved through user instruction.

“If you pick it up rather than slide it, it may get
confused.”

“If it gets confused, pick it up, put it down in
alignment with the image and then slide from
there.”

In our experience users had no difficulty in
understanding the correct way to use the device and
the work flow was not impeded.

5.3. Cases 2, 3 and 4

Cases 2, 3 and 4 all have a similar treatment. A
discussion of case 4 will illustrate what is necessary.
Given the 3 peaks in X and the two peaks in Y, in case
4, there are six possible locations for a conductive foot,
as shown in figure 11. There are 120 possible
assignments of the possible points to the three
conductive feet. However, only a few of these
possibilities will explain all of the data. Each foot must
be assigned to a different X peak or one of the X peaks
will be unexplained. Similarly both Y peaks must be
used. For example, the combination a, b and d would
leave the third X peak unexplained and therefore is not
a valid combination.

Fig 11. Points derived from X, Y peaks

For case 4 there are 6 possible point/foot
assignments that use all of the histogram peaks. Given
one of these possible assignments, we can test to see if
the assignment is consistent with the known width and
height of the handheld device. The distance between
foot 0 and foot 1 must be equal to the handheld width.
The distance between foot 1 and foot 2 must be equal
to the height. This check will eliminate all but one
possible configuration in cases 3 and 4. In some
situations case 2 can have multiple configurations that
are consistent with the data. The final ambiguity of
case 2 is resolved using continuity of motion.

6. Display alignment

The handheld display and the context display on
the touch table need to correspond in size and location.
In XICE all coordinates are specified in view
independent coordinates (VIC). When a display device
is configured its pixels per inch are specified as well as
the preferred viewing distance. This configuration
information is sufficient to convert VICs into pixels. If
the handheld and the touch table projector have their
pixels per inch set correctly and have the same viewing
distance then their coordinate systems are
automatically consistent when application information
is drawn in VICs. There are other systems besides
XICE that account for variations in pixels per inch, but
the viewing distance is also critical in this focus plus
context technique. The resolution of the Diamond
Touch for sensing the conductive feet can lead to some
misalignment between the hand held and the table top.
However, the hand held bezel provides enough of a
break in visual continuity that this is not noticeable.

7. User experience

We have not done formal usability studies on
Spilling. We have, however, learned some things by
watching people try to use the system.

Our first observation was that fixed location
widgets are problematic when interacting with a
Spilling table. Using the non-dominant hand users
freely scroll around their workspace. However, items
like menus and tool bars that are at fixed locations
require that the user scroll away from their work
context to bring such widgets into the focus region of
the hand held. The user must then scroll back to the
original work area. This is very awkward. Similar
problems have been noted with very large displays
where substantial effort is required to move from a
work location to some distant widget group. We have
dealt with this problem by providing access to all
widget actions through pop-ups at the work site.

a b c

d e f

A second issue is interactions that require
dragging across a distance larger than the hand held’s
display size. At first we believed that this was
something that just could not be done. That did not
concern us because such techniques are very difficult
with hand helds anyway. However, users quickly
learned to hold the dragged item in the hand held view
and then simultaneously scroll the work with the non-
dominant hand. Once a user has seen the technique it
works very well and is much better than trying to do
the same thing on the hand held alone. The fact that the

hand held, with larger mass and sliding friction, holds
still while the work is moved is also more effective
than dragging by moving the hand held as in
Ubiquitous Graphics or Peepholes.

8. User interface security threats

We do not presume to deal with all possible
security threats to network-connected computers.
However, we have tried to avoid introducing any new
threats when distributing the user interface to foreign
machines. In Spilling there are three security threats in
the user interface. The first and most dangerous is the
acceptance of input from untrusted machines. Spilling
resolves this by only accepting scrolling information
and by isolating that input from the application, as
shown in figure 1. The second is that a table top
display server has access to all of the information
being presented on the table. This threat is
fundamental to distributed UI architectures and cannot
be removed. Any information displayed by a computer
for humans to see can be stolen by the display
computer.

There is one more subtle UI attack that is possible.
A rogue table could lie about scrolling information and
about the context while scrolling a different part of the
application under the hand held and thus deceiving the
user about where their input is going. The table top
cannot introduce any new interaction to the hand held,
it can only scroll existing elements around. For such a
threat to succeed there would need to be a deep
understanding of the application by the table top and
an application so designed that the user could be
deceived by the context. This is a very obscure threat
that is easily thwarted by appropriate application
design.

9. Summary

We have created an architecture where users can
bring hand held devices with small screens to a table
top display and “spill” their user interface onto the
table. The table provides a large context to the normal
interactions of the hand held device. We have also
shown how the hand held and the table can be visually
synchronized. Lastly we have presented an algorithm
for sensing hand held position and orientation through
a projective sensing devices such as the Diamond
Touch.

10. References

[1] Baudisch, P., Good., N., Stewart, P., “Focus Plus Con-
text Screens: Combining Display Technology with
Visualization Techniques”, User Interface Software and
Technology (UIST ’01), ACM (2001), pp. 31-40.

[2] Bederson, B. B., Grosjean, J., Meyer, J., “Toolkit De-sign
for Interactive Structured Graphics.” Software En-gineering,
IEEE (2004), pp. 535-546.

[3] Dietz, P.H.; Leigh, D.L., "DiamondTouch: A Multi-User
Touch Technology." ACM Symposium on User Interface
Software and Technology (UIST ‘01), ACM (2001), pp 219-
226.

[4] Lee, J. C., Hudson, S. E., Summet, J. S., and Dietz, P.
H., “Moveable Interactive Projected Displays using
Projector-based Tracking,” User Interface Software and
Technology (UIST ’05), ACM (2005), pp 63-72.

[5] Myers, B. A., “Using Handhelds and PCs Together”,
CACM, 44(11), ACM (Nov 2001), pp 34-41.

[6] Olsen, D. R., Nielsen, S. T., and Parslow, D., “Join and
Capture: a Model for Nomadic Interaction,” User Interface
Software and Technology (UIST ’01), ACM (2001), pp 131-
140.

[7] Pering, T., Ballagas, R., and Want, R. “Spontaneous
Marriages of Mobile Devices and Interactive Spaces,”
CACM, 40 (9), (Sept 2005), pp 53-59.

[8] Richardson, T., Stafford-Fraser, Q., Wood, K. R.,
Hopper, A., "Virtual Network Computing", IEEE Internet
Computing, 2(1), 1998.

[9] Sanneblad, J. and Holmquist L. “Ubiquitous graphics:
combining hand held and wall-size displays to interact with
large images.” In Proceedings of AVI 2006, ACM, (2006),
pp 373-377.

[10] Scheifler, R. W. and Gettys, J. “The X Window System”
ACM Transactions on Graphics, 5(2), (April 1986), pp 79-
109.

[11] Shen, C., Vernier, F. D., Forlines, C., and Ringel, M.
“DiamondSpin: an Extensible Toolkit for Around-the-table
Interaction,” Human Factors in Computing Systems (CHI
’04), ACM, (2004), pp 167-174.

[12] http://wacom.com/

[13] Want, R., Perins, T., Danneels, G., Kumar, M., Sundar,
M., and J. Light. “The Personal Server: Changing the way
we think about Ubiquitous Computing.” Ubiquitous
Computing (UbiComp ‘02), Springer Verlag, (2002).

[14] Wilson, A. D., “PlayAnywhere: a Compact Interactive
Tabletop Projection-vision System,” User Interface Software
and Technology (UIST ’05)¸ ACM (2005), pp 83-92.

http://wacom.com/

[15] Yee, K.-P. “Peephole Displays: Pen Interaction on
Spatially Aware Handheld Computers.” Human Factors in
Computing Systems (CHI ’03), ACM, (2003), pp 1-8.

	1. Introduction
	2. XICE Architecture
	3. Table top interaction
	4. Table top technology
	5. Detecting hand held position/orientation
	5.1. Case 1
	5.2. Resolving ambiguity
	5.3. Cases 2, 3 and 4
	6. Display alignment
	7. User experience
	8. User interface security threats
	9. Summary
	10. References

