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ABSTRACT 
Metrics for evaluating the quality of a human-robot 
interface are introduced. The autonomy of a robot is 
measured by its neglect time. The robot attention demand 
metric measures how much of the user’s attention is 
involved with instructing a robot. The free-time and fan-out 
metrics are two ways to measure this demand. Each of 
them leads to estimates of the interaction effort. Reducing 
interaction effort without diminishing task effectiveness is 
the goal of human-robot interaction design. 

INTRODUCTION 
Autonomous robots that can perform a variety of tasks with 
no human intervention are an interesting but ultimately 
marginal goal. What we really want are robots that can do 
what we want when we want it, not whatever they want 
whenever they want it. We are not interested in producing 
alternate life-forms. We are interested in effective servants. 
We want devices that will leverage human attention and 
human ability.  In this paper we ignore the leveraging of 
human physical abilities and focus on the leverage of 
human attention.  

In this paper we present a series of metrics for measuring 
the effectiveness of robots as servants of their human 
masters. In particular we are looking for measures of 
interface effectiveness that capture our desires to leverage 
human attention 

The first metrics are those that measure task effectiveness 
(TE). Task effectiveness is some measure of how well a 
task is actually performed. At the end of the day we care 
mostly about getting some task done. In driving or 
navigation scenarios we might measure effectiveness as the 
time required to get from point A to point B. In search 
tasks we could measure the time to find all targets or the 
number of targets found in a given amount of time. In an 
assault task we might measure targets destroyed and losses 
taken.  

Ultimately task effectiveness measures are key to 
successfully designing and evaluating human-robot teams. 

However, task effectiveness measures do not shed any 
insight on how to improve the human-robot interface or 
how that interface might be modified to increase the 
effectiveness. We believe that metrics must be based in a 
framework that guides design. We are looking for an 
engineering approach that leads us through a space of 
design alternatives to a human-robot interface that 
enhances the task effectiveness of the team. 

In this paper we will discuss six interrelated metrics that 
can guide the design of human-robot interaction. They are 
task effectiveness (TE), neglect tolerance(NT), robot 
attention demand(RAD), free time(FT), fan out (FO) and 
interaction effort (IE). These metrics are somewhat generic 
and are instantiated differently for different robot tasks. 
However, together they provide a framework for thinking 
about interaction design. 

TASK EFFECTIVENESS 
As mentioned earlier, task effectiveness is a measure of 
how well a human-robot team accomplishes some task. 
There are a variety of such metrics and for the purpose of 
our framework we do not care what metrics are chosen. 
There are time-based metrics that attempt to maximize the 
speed of performance, error metrics that attempt to 
minimize mistakes or damage, coverage metrics that 
measure how much of some larger goal is achieved, as well 
as other possible metrics. The overarching goal is that 
effectiveness is maximized,but the details are task specific. 

In some of the scenarios presented below, we will need to 
differentiate between overall task effectiveness and current 
task effectiveness. Overall task effectiveness is best 
measured after the task is complete. An example would be 
the time required to accomplish the task. In many situations 
we need a measure of current task effectiveness which is 
the effectiveness of the robot right now. Such a measure 
might be the speed with which the robot is closing the 
distance to a goal. The problem with measures of current 
task effectiveness is that they can be very wrong. A robot 
might be getting closer to the target very rapidly and yet be 
wandering into a cul-de-sac from which it will need to back 
out. It currently appears to be effective but on the overall 
goal it is making negative progress. 
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NEGLECT TOLERANCE 
A very important metric in measuring the autonomy of a 
robot with respect to some task (and corresponding task 
effectiveness metric) is the robot’s neglect tolerance (NT). 
Neglect tolerance is a measure of how the robot’s current 
task effectiveness declines over time when the robot is 
neglected by the user. We hypothesize that for a given 
robot and a given problem space there is a characteristic 
neglect curve such as that shown in figure 1.  
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Figure 1. – A Characteristic Neglect Curve 

This curve shows that the current task effectiveness of the 
robot reduces  as a function of the time since the user last 
paid attention to the robot.  For a simple navigation 
problem we can define current task effectiveness as the 
speed with which the robot is making progress towards a 
goal. We can establish an acceptable minimum 
effectiveness threshold and using the characteristic neglect 
curve we can define the neglect tolerance as the time that 
can expire before the robot’s effectiveness drops below the 
acceptable minimum. This is shown in figure 2. 
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Figure 2 – Neglect Time 

An Artificial Robot World 
A simple robot world is helpful in illustrating the nature of 
neglect. Consider the world shown in Figure 3. There is a  
robot (upper left), a target (lower right) and trees and rocks 
that form obstacles to movement.  
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Figure 3 – Simple Robot World 

A very simple robot accepts a compass direction from the 
user and will travel in that direction until it reaches an 
obstacle in which case it stops and waits. We can also 
equip our robot with an odometer so that the user can set a 
desired distance to travel before pausing for further 
instruction. Our current task effectiveness measure is the 
speed of travel from start to target. This robot has some 
degree of autonomy in that it can move without instruction 
and can sense when it can go no farther and has a limited 
sense of distance.   Designing robots with the ability to 
diagnose when they need assistance is an area of current 
and ongoing research. 

The gray line shows one possible path to the target with 
three numbered segments. For each segment the user can 
set a direction and then neglect the robot and go do other 
things. The neglect time depends upon the speed of the 
robot and the distance to the turn to segment 2. On path 
segment 1, however, it is possible that the robot might drift 
to its left and encounter the tree in which case it will stop 
much earlier. It is also likely that the robot odometer is 
inaccurate and the segment will end early or late. 

In the case of this simple robot the ideal neglect time is the 
time to reach the next turning point. The actual neglect time 
may vary depending upon encountered obstacles. For any 
given segment the neglect curve is as shown in Figure 4. 

 
Figure 4 – Single Segment Neglect Curve 

If we assume that the distance to an obstacle has a 
Gaussian distribution about some mean distance then the 
average neglect curve over a number of segments will be 
similar to that shown in figure 1.  

Task Complexity 
This simple robot world also illustrates the role of task 
complexity. If we take our simple world and scale it up to 



thousands of rocks and trees spread over a larger area, the 
neglect curves would remain the same as long as the 
density of obstacles (obstacles per unit area) remains the 
same. If, however, we increased or decreased the density of 
obstacles, then the neglect curves will change as the 
distribution of time to stopping changes. Neglect curves are 
also a function of task complexity, as shown in figure 5.  
That neglect curves follow this hypothesized shape has 
been validated in [1] and used by [2]. 

Neglect time

Effectiveness

Task
Complexity

Figure 5 – Neglect and Task Complexity 

In our simple robot world complexity is a function of 
obstacle density. In other worlds this may be much more 
complicated. Sensor error, active obstacles such as other 
vehicles, and uneven terrain that modifies vehicle speed 
can all contribute to the complexity of the task.  

Measuring neglect tolerance 
Neglect tolerance is our basic mechanism for measuring the 
autonomy of a robot. The amount of time that a human can 
ignore a robot has a lot to do with the attention leverage 
that the robot can provide.  This attention leverage is 
important for two reasons.  First, attention leverage allows 
an operator to manage multiple tasks; this is important for 
such typical tasks as simultaneously guiding the robot 
through a world and looking for some target (such as a 
victim in a search-and-rescue task [3].  Second, attention 
leverage allows an operator to manage multiple robots 
which is an important special case of managing multiple 
tasks. 

We have identified two ways to measure neglect tolerance. 
The first is a premeasured average neglect time. We can 
measure this by placing a robot at some random location in 
a problem world and giving it a random goal to achieve. 
We then can measure the amount time that the robot is 
effective, that is, the elapsed time during which the robot 
makes progress towards that goal before dropping below 
the effectiveness threshold. In our simple robot world this 
is equivalent to placing the robot and target at random 
locations and measuring the time before the robot stops. 
The nice thing about this approach is the neglect tolerance 
is a simple measure of the robot capability and the task 
complexity.  

Our experiments, however, have shown that neglect 
tolerance is not quite so simple. There is an interaction 
between neglect tolerance, the user interface and the global 
problem space. Frequently the users will detect global 
problems, such as the robot wandering into a cul-de-sac, 
and will intervene before the robot itself detects a problem.  
This problem is partly caused by the use of estimates of 
current task effectiveness that differ from the human’s 
perception of task progress.  An alternative neglect 
tolerance measure that relies on the human’s estimate of 
task progress is to measure actual active usage of the robot 
by a user. In this case neglect tolerance is measured as the 
time between some user instruction and either dropping 
below effectiveness threshold or some new user 
instruction. This leads to more accurate neglect tolerance, 
but now is no longer independent of the user. For example 
the user’s trust in the robot’s autonomous abilities has a lot 
to do with such neglect measures. If the user does not trust 
the robot they will intervene much sooner. The impact of 
trust on neglect tolerance needs further study.  

Increasing  NT 
An obvious goal is to increase the neglect tolerance of a 
robot. One way to do this is to increase its intelligence and 
autonomy. If our simple robot had some rudimentary vision 
capability, it might easily see its way around a tree and thus 
keep making progress without human intervention. Thus 
neglect tolerance is increased. As we will show later, 
increasing neglect tolerance can increase the leverage of 
human attention, but not necessarily so. 

Fortunately, much work has been done, albeit indirectly, in 
the robotics community on designing neglect tolerant 
robots.  This work has been necessary for designing robots 
that work under conditions of high communications 
latency.  Since communication latency is analogous to 
attentional neglect, techniques such as safe-guarding [4,5], 
waypoint-navigation, and shared control [6,7] are 
important. 

Solely focusing on NT has other problems. In our simple 
robot world we can increase NT just by slowing down the 
robot. If it goes slower, it will take more time to reach a 
stopping point and thus can be neglected longer. However, 
in our task effectiveness measure of speed to target, this 
approach is very poor. If, however, TE was measured as 
number of rocks and trees studied along the way, slowing 
down the robot might be a very effective solution. 
Although measuring neglect  tolerance is an important step  
to improving a human-robot team, other metrics are also 
necessary for creating successful designs. 

ROBOT ATTENTION DEMAND 
Since we are trying to increase the leverage that a robot 
offers to a human-robot team, we should measure how 
much attention a robot is demanding. We call this robot 
attention demand or RAD. This is a measure of the fraction 
of total task time that a user must attend to a given robot. 



We define RAD as a relationship between NT and 
something we call interaction effort (IE). Interaction effort 
is a key component in our attempts to improve the human-
robot interaction. A simplistic view of IE is the amount of 
time required to interact with the robot. We will discuss the 
nature of IE in more detail later. The relationship between 
these three measures is defined as follows: 

NTIE
IERAD
+

= . 

RAD is a unitless quantity that represents the fraction of a 
human’s time that is consumed by interacting with a robot.  
The numerator is the amount of effort that the user must 
expend interacting with the robot and the denominator is 
the total amount of effective time of the robot. If IE is small 
relative to NT then the RAD will be quite small. In the case 
of teleoperated robots or simple driving a car, NT is very 
small and thus RAD approaches 1. The goal of a good 
human-robot interface is to reduce RAD so that the user 
can focus on other things besides interacting with the robot.  
Reducing RAD can be done by increasing NT or 
decreasing IE. 

Increasing NT will not always decrease RAD because NT 
and IE are not independent. For example, we could create a 
robot that can accept predicate logic descriptions of a world 
and similar predicate logic statements of a desired 
behavior. Such a robot might reason independently and 
function quite well for an extended period of time (higher 
NT). However, in many scenarios the effort required to 
formulate robot instructions as predicate logic would 
increase IE to the point where the NT gains are irrelevant 
and RAD is actually much worse.   

Another example of how increasing NT does not always 
decrease RAD is one that is experienced by many 
roboticists.  Creating an autonomous robots requires 
extensive engineering, programming, re-engineering, and 
reprogramming.  The result is that the robot may be fairly 
autonomous --- it may have a high NT --- but to improve 
the robot’s performance, the designer must re-engineer and 
reprogram the robot.  Such re-engineering is a form of 
interaction that takes a tremendous amount of effort.  As a 
result, the “up time” where the robots operate 
autonomously and can be neglected is a small fraction of 
the time spent by the operator on the robot. 

Free time 
A metric related to RAD is the user’s free time (FT). This 
is the fraction of the task time that the user does not need to 
pay attention to the robot. We define free time as: 

RADFT −= 0.1 . 

Free time is interesting not only because it is a measure of 
the attention leverage that a robot provides, but it also gives 
us a mechanism to measure RAD. If the user has free time, 
then that free time can be used on some alternate task. One 

way to measure free time is to give the user a robotic task 
and some other secondary task. In our simple robot world 
we can give the user the task of guiding the robot from start 
to target. However, because the robot wheelbase can only 
travel so fast, the time to target will not change with most 
improvements of the human-robot interface. If, however, 
we asked the user to count the number of purple-tailed, 
bullfinches nesting in the trees along the way we could 
measure how much of the user’s attention was demanded 
by the robot. Finding more bullfinches without increasing 
the time to target would mean that RAD had been reduced.  

 For the kind of environments addressed in this paper, there 
is usually another task that is of importance upon which the 
user should spend their time. This might include 
surveillance, finding victims of a disaster [3], threat 
detection, or surveying the terrain. What we would like, 
however, is a means for understanding the RAD of our 
human-robot team in a task independent way. A human-
robot solution with a low RAD can perform many 
secondary tasks.  This assertion has been validated in work 
presented in [6]. 

Actually measuring free time can be hard because we don’t 
actually know when the user is doing nothing. However, 
we can produce surrogate measures for FT that will allow 
us to detect when RAD has been reduced. In many cases 
we do not actually care what the free time measure is. We 
only care that some change in our human-robot interface 
has increased FT and reduced RAD. From the 
psychometric world we can import a number of attention 
consuming tasks that we can measure as a surrogate for FT 
such as performing mental arithmetic [8], carrying on a 
fabricated cell-phone conversation [9], classifying objects 
[10], and reading email [11]. We can use any of these as a 
secondary task and measure increases in their performance 
or frequency as an indicator of reduction of RAD. For 
example, Crandall had subjects perform mental arithmetic 
while driving a robot under two teleopeartion schemes [6].  
In experiments, the more autonomous teleoperation scheme 
allowed users to perform many more secondary tasks (a 
statistically significant difference with very few subjects), 
and with marginally higher performance.  

FAN-OUT 
One way to leverage human attention is to allow a user to 
operate multiple robots simultaneously. This generally 
should allow the human to accomplish some tasks more 
quickly and effectively.  For example, on tasks such as 
surveillance or exploration, multiple robots can cover a 
space more effectively than a single robot. 

We propose to measure the effectiveness of a human-
robots team using what we call fan-out. Fan-out is an 
estimate of the number of robots that a user and effectively 
operate at once. The fan-out metric is defined in terms of 
RAD as 
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. 
Task saturation can occur for two reasons.  First, it can 
occur when the task is so simple that dedicating a lot of 
robots to it will not improve performance.  Consider for 
example our sample robot world where there are only 2 
targets.  No matter how effective our interface or high our 
neglect tolerance, no more that 2 robots are required to get 
the job done. Sending multiple robots after the same target 
is pointless in this case.   The second cause of task 
saturation occurs when the task space is too crowded. If all 
of the robots start in the upper left corner of our world, it is 
hard to get many of them moving because they run into 
each other. In search tasks, the search perimeter imposes a 
limit on the number of robots that can be applied to the 
task. The task saturation limits are important in 
understanding how to apply a human-robots team to a task, 
but they get in the way of understanding the human-robots 
interface. 

 

From the FO equation we see that FO increases as neglect 
tolerance becomes large relative to interaction effort. The 
more neglect tolerant a robot becomes, the more robots a 
single user can operate. This equation, however, does not 
tell the whole story. As fan-out increases, interaction effort 
also increases, as will be discussed in the next section. 

This means that if a person wants to be able to control 
multiple robots with given capabilities, they should spend 
their design effort in making IE low  One of the attractive 
things about fan-out is that it can be measured. There are 
two ways of measuring fan-out that yield similar results, 
but on different scales. The first approach measures the 
performance plateau. If we consider the graph in figure 6 
we see that task effectiveness should increase as more 
robots are added to the task. However, at some point the 
user becomes overloaded and adding another robot does 
not improve the performance. 

The second constraint that limits fan-out is caused by 
limitations of human cognition, primarily memory.  In 
controlling multiple robots, the human must remember 
robot state information, interface modes, robot abilities, 
etc.  This places demands on working memory since only a 
limited number of pieces of information can be stored in 
short-term memory and since only a limited number of 
mental models can be active in long-term memory at a 
time.  We will discuss how these limitations affect FO via 
interaction effort in subsequent sections. 
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INTERACTION EFFORT 
As can be seen from the free-time and fan-out equations the 
human-robot team can be improved by either increasing the 
robot’s neglect tolerance or by reducing the interaction 
effort (IE). Neglect tolerance is primarily a function of 
robot ability. Therefore, reducing interaction effort (IE) is 
the key problem in improving the human-robot interface. 
Being able to measure interaction effort and particularly to 
determine when that effort has been reduced by a new 
interface design is critical to the development of the types 
of human-robot systems that serve our needs.  

Figure 6 – Fan-out performance plateau 

One of the problems with the performance-plateau method 
of measuring fan-out is that it requires a large number of 
trials. To get a good fan-out estimate, it is necessary to run 
multiple task trials for each potential number of robots. 
However, it does give a very realistic estimate of fan-out. 

In most cases interaction effort is directly related to the 
time necessary to interact with a given robot. However, the 
difficulty lies in identifying exactly when a user is 
interacting. Interaction effort is more than just the time 
required to manipulate input devices. In most scenarios, 
interaction effort is dominated by cognitive rather than 
physical effort. Without “mind probe” technology we 
cannot tell if the user is day-dreaming or focused on robot 
control. Eye-tracker experiments have demonstrated 
significant differences in gaze patterns between various 
behavioral states [12]. However, eye-tracking is hard to 
deploy in many situations where robots are useful. 

A second approach to measuring fan-out is the average 
robot activity. In this approach, the user is given more 
robots than they can realistically use. While the task is 
progressing we periodically count the number of robots 
operating above the effectiveness threshold. We take the 
average of these counts as a measure of fan-out.  

There are several physical and cognitive constraints that 
limit how well a system can achieve the theoretical fan-out 
limit.   The first constraint we call task saturation. This is 
when the task, not the user becomes saturated. The 
measured fan-out is lower than the actual RAD would 
indicate because it is not possible to bring more robots to 
bear on the current task.  We resolve the problem of measuring interaction effort in 

two ways The first is to focus not on interaction time, but 
on interaction effort. This is a unitless measure of how 



much effort a user must put into interacting with their 
robots. What we are interested in is relative values of the 
interaction effort. How much less effort is required using 
interface B instead of interface A. Though we cannot pin 
down the units, we do have a comparative tool for 
measuring progress.  

The second component of our approach is to measure IE 
indirectly using the free-time and fan-out measures along 
with their corresponding equations. As we have shown we 
can measure neglect tolerance and, using secondary task 
performance, we can get a measure that is related to free-
time. Using NT and FT, and the free-time equation we can 
compute an estimate of interaction time: 

FT
FTNTIT )1( −

= . 

Note that we do not actually have a measure of free-time, 
we only have a measure of secondary task performance 
(STP).  What we really have then is an estimate of 
interaction effort using a similar equation. 

STP
STPNTIE )1( −

= . 

This estimate of IE can now be used to compare various 
interfaces. 

We can also use our fan-out measures, neglect tolerance 
and the fan-out equation to produce an estimate of 
interaction effort by solving for IE 

1−
=

FO
NTIE . 

These now give us two indirect means for measuring 
interaction effort that we can use in evaluating human-
robots interfaces. Note that the various measures of IE are 
not directly comparable because they depend on other 
measures that have differing characteristics.   

Components of Interaction Effort 
When designing human-robots interactions our key 
problems are to increase neglect tolerance and reduce 
interaction effort. Interaction effort is not monolithic. We 
have identified at least four components to the interaction 
effort. They are subtask selection, context acquisition, 
solution planning and expression of robot directives. We 
will discuss each of these components in turn.  These 
components exist for the general case of an arbitrary 
secondary task as well as for the special case of managing 
multiple robots.   

Subtask Selection 
Task selection is most important when working with 
multiple robots. Having completed an interaction with a 
robot the user must next decide which robot will receive 
assistance. There are several approaches to the problem of 
subtask selection that can reduce this effort. One simple 

approach is to have an automatic round-robin selection 
mechanism. This is where the system automatically 
chooses each robot in turn and presents that robot to the 
user. The interactive effort from subtask selection goes to 
zero, but the task effectiveness and fan-out may suffer 
because the robots in most need of human attention may 
not get that attention when they need it. This is like the 
building security system that sequentially presents security 
camera images to the guard. The cameras all get equal time 
but there is a strong likelihood that a fast intrusion will 
escape the guard’s attention. 

A second approach is to show the data (or a summary) on 
all of the robots to the user and let the user select. An 
interface that supports such interaction has been developed 
by Scholtz [13].  User selection of the next robot can 
produce better selections, but will increase interaction 
effort. Preliminary experiments strongly suggest that 
interaction effort increases with fan-out. Obviously 
searching for the right robot to service will be on the order 
of log(FO) or FO. Getting the best robot to service could be 
FOlog(FO).  

A third approach is to provide an automatically computed 
measure of attention need. The user is then directed to the 
robot with the most perceived need. This would be like 
showing the security guard the images that have detected 
the most movement in the recent past. This can bring 
selection effort back to near zero, but can also have 
problems. If the attention-need metric is not a good one, 
then it may actually be worse than round-robin. If for 
example the attention metric is lack of progress and one 
robot has a bad wheel, the best approach may be to 
abandon the robot, but the attention metric will constantly 
show that poor robot to the user. Similarly if there is a wind 
storm, the motion-based camera attention algorithm will 
constantly images of waving trees in the parking lot to the 
security guard. 

Techniques for assisting the user in making the subtask 
selection will be important to reducing the interaction 
effort. Most approaches to this problem will involve 
increasing the salience of robots that most need attention.  
It is interesting to note that the techniques for automating 
subtask selection are analogous to Sheridan’s 10 levels of 
sharing responsibility between a human and an automated 
system in supervisory control [14].  Additionally, work on 
management policies has direct bearing on this problem 
[15]. 

Context acquisition 
Context acquisition comes when the user must switch from 
one subtask to another. This arises both when operating 
many robots as well as when operating a single robot while 
performing other tasks. When the user’s attention is 
switched, the user must take a moment to understand the 
situation of the new robot that has received attention.   
Although part of this understanding is required for proper 



subtask selection, many aspects of context acquisition must 
be obtained after selection occurs.  For example, when the 
interface draws attention to a particular robot, the human 
must still acquire context (e.g., diagnose the problem) 
before controlling the robot. 

There are multiple issues in context acquisition. A key 
approach is the externalization of memory. For example, 
when driving robots through their front-mounted camera, 
switching to a new robot will cause memory problems for 
the user. The user sees what the camera sees, but they must 
remember, or search again (via, for example, range 
sensors), for what is left, right or behind the robot. Making 
such information visible in the interface should reduce 
context acquisition time. 

There is a serious problem with heterogeneous robots 
because not only must the user reaquire knowledge of a 
robot’s situation, but must also mentally adjust to the 
different abilities of the current robot.  This mental 
adjustment includes loading relevant state information into 
short-term memory and activating relevant mental models 
from long-term memory. 

We have only scratched the surface of the context 
acquisition issues and how they affect interaction effort. It 
is clear the context acquisition effort will go up as fan-out 
goes up. Automatic selection will not make the context 
switch go away. There is a possibility that automatic 
subtask selection may actually increase context acquisition 
time because the user has no understanding of why the task 
was selected. This problem has been identified as a key 
factor in the failure of some automation systems [16]. The 
context acquisition problem is probably the largest 
contributor to an upper bound on fan-out regardless of 
robot capability. 

Planning 
Once a user has selected a robot, understood the robot’s 
situation, the user must plan what instructions the robot 
must be given. This depends very little on the number of 
robots but rather on the complexity of the task, the 
intelligence of the robot and the user’s understanding and 
trust in that intelligence.  

As the complexity of a task increases, the amount of effort 
required for the user to come up with a robot’s next 
direction is increased. This interaction effort can be 
decreased, however, if the robot or the interface can supply 
some of the planning information. In our simple robot 
world the user interface could show a possible path to the 
target that was automatically calculated. The user’s 
planning problem is now greatly simplified. However, if 
the interface is capable of completely solving the problem, 
then the human is not required at all. Usually there are 
issues that the software or the robot’s sensor processing 
cannot resolve. If the software-supplied solution is not 
appropriate then the user must plan on their own or may 
even be distracted by the erroneous plan presented.  Such 

issues have been identified in other assisted planning 
domains [17]. 

In addition to the increase in planning difficulty caused by 
increasing task complexity,  planning can also be made 
more difficult when robots become more sophisticated.  
This occurs because communication may be more 
involved, trust and expectations may be misplaced, and 
developing a correct mental model of possible robot 
behaviors may become prohibitive. 

Not only must the problem be solved (find a path to the 
target) but the user must also understand the robot’s 
capability. We have found that neglect tolerance goes down 
when the users have less trust in the intelligence of the 
robot. It also makes a difference if the user clearly 
understands the nature of the robot’s abilities. The robot 
may be powerful but if the capabilities are obscure then the 
users will ignore them and planning will still be done by 
the user. The user will also set more conservative goals for 
the robot and the neglect tolerance will be reduced. 

Expression 
Having selected a robot, acquired the context, and planned 
a solution, the user must express intent to the robot. Even at 
this phase, the physical effort is rarely the dominant factor. 
As a result of planning the user has conceived of some 
action that the robot should take in the physical world. The 
user must now translate that desired physical behavior into 
inputs to the human-robots interface software. Don 
Norman has characterized this translation from a planned 
solution to actual control inputs by the user as the “Gulf of 
Execution”[18]. This translation is what requires most of 
the effort.  

We believe that a basic problem in many human-robot 
interfaces is that user intent must be expressed in terms of 
robot control values rather than in terms of intended action 
in the physical world. This requires the user to map 
physical world intent backwards to the control values that 
will produce the desired result. This mapping from problem 
space to control space is a key source of interaction effort. 
We believe that the human-robot interface should mitigate 
or automatically perform such mappings and thus reduce 
the effort required. 

 
SUMMARY 
The obvious goal of any human-robots interface is to 
increase the effectiveness of the team in accomplishing 
some task. We believe that the keys to this effectiveness 
are increasing the neglect tolerance of the robots and 
reducing the interaction effort of the interface. We have 
captured this in the free-time and fan-out metrics. We have 
shown how these two metrics along with neglect tolerance 
can be measured and then used to produce estimates of 
interaction effort that can be used to chart the progress of 
improvement in human-robots interface design. Lastly we 



have broken down interaction effort to identify where and 
how it can be reduced. 
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