
Query-by-critique:
Spoken Language Access to Large Lists

Dan R. Olsen Jr, Jon R. Peachey
Brigham Young University, Computer Science Department

Provo, UT 84602 USA
{olsen, peachey}@cs.byu.edu

ABSTRACT
Spoken language interfaces provide highly mobile, small
form-factor, hands-free, eyes-free interaction with
information. Uniform access to large lists of information
using spoken interfaces is highly desirable, but
problematic due to inherent limitations of speech. A
speech widget for lists of attributed objects is described
that provides for approximate queries to retrieve desired
items. User tests demonstrate that this is an effective
technique for accessing information using speech.

KEYWORDS: Spoken language interfaces, search, tables

INTRODUCTION
The ICE (Interactive Computing Everywhere) project is
focused on building infrastructure and interactive
techniques that allow people to interact with information
and services from a variety of physical situations. We see
speech as a major component of such efforts. The major
benefits of speech are that it is independent of physical
posture, can be hands/eyes free, requires only a small
physical size, and has very low power requirements.

Our approach is to create a set of “speech widgets” that
can be readily composed to create a variety of
applications, rather than natural language dialogs. Such
widgets would have a standard “hear and say,” much like
the “look and feel” standards in graphical user interfaces
[10]. With a standardized widget set, developers can
spend a significant amount of time working out the
usability of the widgets. This effort can then be easily
leveraged across all uses of the widget.

Our approach to such speech widgets is to organize our
interactions around information structures. We see the
manipulation of information as our guiding interactive
paradigm. Widgets that handle atomic values such as
numbers, dates, times, menus, and selection from small,
enumerated lists are quite common. It is also common to
collect such components together into a tree that provides

standard navigation mechanisms. Such structures create
essentially fixed, finite sets of information. What are
missing are standard mechanisms for working with large
amounts of information using spoken language
interfaces.

The simplest data structure that can handle an arbitrary
amount of information is the list. However, lists are very
problematic in spoken language interfaces. Listening to
list items is much slower than visually scanning that
same information. The transient nature of speech,
coupled with limits on short-term memory makes it
difficult for users to maintain a sense of context. Despite
these difficulties, there is still a very strong need to
access large amounts of information through speech.

Our model for lists is a table structure like that shown in
Figure 1. There is a list of objects and a fixed set of
attributes for those objects. However, in the problems we
are interested in, there are tens to thousands of items and
possibly tens of attributes.

Name Age Height
Fred 22 72
Joan 17 68

Gerald 40 73
Jackie 25 66

… … …
Figure 1: A Tabular List

It is infeasible to scroll through such a list because
speech is such a slow feedback channel. The only
possible approach is to search. However, short-term
memory makes formulating a query difficult. Speaking a
query in a restricted natural language is possible, but that
leads to long complicated utterances. The need for
feedback to handle recognition errors means that the
query must exist as a separate object that the user must
remember and manipulate. The spoken dialog becomes
focused on the query as much as on the information
being sought.

Queries are problematic for users even in graphical
situations. Users are frequently vague about the things
that they are searching for. As users peruse the data their
sense of what they want will drift. While searching for a
car of a particular make and year, desires will shift as the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
UIST’02, October 27-30, 2002, Paris, FRANCE.
Copyright 2002 ACM 1-58113-488-6/02/0010…$5.00.

Volume 4, Issue 2 131

sticker price becomes apparent. A formal query is not
conducive to these needs.

Our approach to manipulating lists is to present an
information object to the user. The user then critiques the
object by commenting on desired values for the
attributes. After each critique utterance we rank objects
based on the recent history of user comments and present
the most likely object. The user’s attention is always
focused on the information object at hand rather than on
an auxiliary query object.

QUERY BY CRITIQUE
A table representation of information like that shown in
Figure 1 is adaptable to a wide variety of applications.
There are three general interactive tasks that relate to
such lists.

• Editing and modifying the list or its elements
• Getting an overall sense of the content of the list
• Locating desired items in the list.

In large lists, the ordering is rarely important other than
sorting in various ways. Therefore insertion of new items
is simply a case of specifying the attributes of the new
object. This is an instance of filling a fixed set of fields,
for which there are already good speech dialog forms.
Deleting items involves selecting the items and then
specifying deletion. The hard part is selecting the items
to begin with. Modifying items is similarly dominated by
the selection task. All the really hard parts involve
locating desired items. We will focus on the selection
task.

Getting an overall sense of the contents of a list is an
important task. What is required is a summary of a list of
items. Though this is of value, we have not studied this
task.

This work is focused on designing spoken language
dialogs that help users find desired items. There are two
fundamental approaches to this problem. The first is to
allow the user to specify some predicate and then report
back on the items that satisfy that predicate. This is the
traditional form-query approach. The second strategy is
to define a ranking on the items and report them in
highest to lowest order.

Predicate-based queries
Consider a user trying to locate an apartment for rent.
Using a predicate approach, we might have the following
dialog:
 U1: “rent less than $500”
 C1: “there are 35 items”
 U2: “city is Spanish Fork”
 C2: “there are 0 items”

At this point the user can become a little confused. There
is no information about whether there might be
apartments for $550 or possibly in a town near Spanish

Fork. The rigidity of the predicate is not helping the user
solve their problem. To break the impasse the user might
say,
 U3: “rent less than $525.”
 C3: “there are 0 items”
We now have a query algorithm problem. By implicitly
intersecting all of the user’s utterances, this new
utterance will not expand the selected set. At this point
the user is now confused about what the query really is.
We can have the system start to speak the query, but if
more than 3 attributes become involved, the time spent
listening to the current query starts to dominate
everything else.

A second problem arises when the user wishes to modify
the query. We must add dialog that removes or modifies
components of the predicate. We soon start to have more
dialogs about queries than we do about the actual
information the user is working with. We can eliminate
the notion of a query object by having users speak
queries as full sentences, such as “Apartment with rent
less than $500, bedrooms greater than 1, air-conditioning,
parking is covered, and city is Spanish Fork.” Not only
does such a sentence pose recognition problems, it is also
very hard for a user to create and correctly understand.

One approach to such list queries is to simplify the query
model. Instead of conjunctions and disjunctions of simple
predicates, queries can be modeled as upper and lower
bounds on each attribute. Equality is a special case where
upper and lower are the same. This simplifies what the
user must understand and what must be spoken. For the
most part the query can now be changed by new
statements. Utterance U3 would move the upper bound
rather than add a new conjunction. This simplified query
model does not correctly handle attributes without a
sorted order.

A key difficulty that remains is the fact that the system is
still reporting either too many items to use effectively or
no items at all. The user then must guess at possible
query modifications that will yield some information.
This is not acceptable.

Search by Ranking
An alternative approach is to provide a ranking on the
data items and let the user work down the list from
highest to lowest. In this formulation the user is always
working in terms of concrete data. For example, they are
continually hearing about possible apartments. Our
dialog may proceed as follows.
 U4: “rent less than $500”
 C4: “apartment rent is $500, city is Salt Lake,

bedrooms is 1”
 U5: “city is Spanish Fork”
 C5: “apartment city is Spanish Fork, rent is

$600”

132 Volume 4, Issue 2

In this dialog the system is always attempting to satisfy
the requirements that the user is expressing but is
violating some of them in cases where they cannot all be
satisfied. In C5 the system has suggested an apartment
that is in Spanish Fork but violates the rent requirement.
The user finds the rent in C5 to be a little high and might
say:

 U6: “next”
 C6: “apartment city is Mapleton, rent is $550”

The next most highly ranked item is spoken. Mapleton is
a town that is close to Spanish Fork. This second choice
sacrificed the city requirement in favor of rent closer to
$500.

In this ranked approach there is no explicit query object
that the user must understand. The user’s utterances
control the ranking. However, as a dialog proceeds the
user’s desires may shift. The user may recognize that rent
is higher than they expected and start focusing on other
issues, such as parking facilities for their new car. The
user may also give up on Spanish Fork and decide to get
a job in Salt Lake thus changing everything. Our
approach to this shift of interest is to have the importance
of user utterances decay over time. More recent
statements have precedence over earlier ones. Thus the
user’s shift of focus is implied by the user’s current
utterances.

It is this more fuzzy approach to queries that we have
chosen for our list speech widget. The speaker’s
expressed desires are used to compute a ranking on the
items. We believe that this form of search dialog is more
natural and closer to how one would speak with a real
estate agent or automobile salesman.

Speech Feedback
There are many attributes of an item such as an
apartment. These include security deposit, air
conditioning, whether there is a pool, etc. Speaking all of
these attributes to a user will create overload. Some
attributes are more important to a particular person than
others. Some are desirable to know but not as important
in selecting an apartment.

In computer response C4 the number of bedrooms was
mentioned and then omitted in C5 and C6. This is
because the user had not expressed any interest in this
attribute. It must be possible, however, for the user to
find out about any of these attributes. In C5 and C6 the
spoken order of the attributes have changed to reflect the
user’s stated interests. The system must also track what
the user is interested in so that object feedback is tailored
to those interests.

QueryByCritique language
Based on the above discussion we can now define the
spoken language supported by our list widget. There are
four types of commands that the user can say.

• Attribute critique
• Attribute Inquiries
• List navigation
• Help

Attribute critique commands
The heart of the widget is in the attribute critique
commands. These commands reflect two different ways
in which people approach problems. In one approach the
user comes to the system with definite attributes in mind
such as the amount of rent they can afford and the
number of bedrooms that they need. In other scenarios
the user is fuzzier about their goals. In many situations
the user is responding to the data and making evaluations
of its appropriateness. We reflect these approaches in two
styles of commands, which we term value-specific and
example-relative. We believe these two classes are each
suited for different search problems.

The value specific commands have the following forms:

• <attribute name> less than <value>
• <attribute name> greater than <value>
• <attribute name> is <value>

These commands are readily instantiated for virtually any
application where the attributes have a sorted order that
is clear to the user. Good examples are rent and number
of bedrooms.

Some attributes, such as cities, do not have an interesting
sorted order. Sorting them alphabetically may be
algorithmically correct, but not at all helpful in our
example dialogs. There are a broad class of attributes
which are not ordered, but do have a distance metric. In
the case of cities we can compare them on the number of
miles they are apart. For such distance-comparable
attributes only the “is” command is appropriate.

The example-relative commands implicitly use the
attributes of the last data object presented by the
computer.

• like <attribute name>
• don’t like <attribute name>
• like [this | <object type>]
• don’t like [this | <object type>]
• higher <attribute name>
• lower <attribute name>

The “like” and “don’t like,” commands either attract or
repel objects with those attribute values. Liking or
disliking an object is the same as commenting on all of
the attributes heard about the last object presented. The
higher and lower commands are shorthand for the greater

Volume 4, Issue 2 133

than and less than commands. If the apartment last
spoken has rent of $700, saying “lower rent” is the same
as saying, “rent less than $700.” The user is referencing
the current object’s values.

An additional advantage of the example-relative
commands is that the speech recognizer does not need to
recognize attribute values. Only a limited command set
plus the attribute names must be recognized. For example
“don’t like color” can be more robustly recognized than
“color is colorName” where the range of color names can
be very large.

Navigation commands
These simply move up and down through the current list
rankings. They are simply “Next” and “Previous.”

Attribute Inquiries
Most of the dialog fragments require the user to know
about the available attributes for an object. In addition,
only a very few attributes can be spoken quickly enough
while searching. The inquiry commands are:

• What is <attribute name>?
• What are the attributes?
• Describe / More

The “Describe” command will speak the first few
attributes of an object. The “More” command will speak
additional attributes.

Help
Throughout all of our speech widgets, “What can I Say”
along with “More” will describe all of the commands.

RELATED WORK
A practical example of using a spoken language interface
to access a large amount of data is VPQ (Voice Post
Query), a system developed by AT&T to provide spoken
access to their corporate personnel database consisting of
more than 120,000 entries [1]. VPQ uses natural
language understanding, dialog control components, and
dynamic constraint analysis to locate answers to the
user’s exact query. Our widget takes a much more
simplistic approach.

Our approach to locating information relevant to the user
is similar to the system explained in [5], which produces
a ranking of database objects in response to a query
containing vague predicates. In the referenced system,
the user makes binary relevance judgments about the
retrieved objects, which the system remembers and uses
to produce improved rankings. We apply the same idea
to a spoken query interface in QueryByCritique in which
the entire list of data is ranked based on similarities to the
user’s spoken query. However, our approach is based on
more than the user’s binary relevance judgments of
retrieved objects. The user is able to critique each

attribute value and specify just how the system should
adjust that value.

Intelligent information systems have been created to
provide users with data that may not be exactly what was
asked for in a query, but may in fact be relevant to what
the user is looking for. Cooperative answering systems
[4,6,7] use generalization, specialization, and relaxation
of queries to capture related or neighboring information
from a structured database. This would resolve the user’s
vagueness problems but still requires a query to be
expressed and managed and does not handle drift in user
intentions.

Solutions to the search problem for speech interfaces
have been developed for specific applications. The
NJFun System [11] was developed to provide users with
access to information on fun things to do in New Jersey.
NJFun uses a reinforcement learning approach to
automatically optimize the dialog policy and help the
user find what he is looking for quickly. Our approach
steers away from dialog optimization and concentrates
primarily on allowing the user to explore the data. Our
dialog consists of basic critique commands made by the
user and immediate feedback of ranked items to the user.

Similar to reinforcement learning are recommendation
systems [2,3,9], which can be used for any task that
requires choice among a large set of predefined items.
Adaptive Place Advisor [8] is an example of a
recommendation system in which the user interacts with
the system to narrow down choices by answering a
sequence of questions aimed at removing alternatives,
rather than simply ordering them. QueryByCritique
grants the user full control over their comments on the
data rather than imposing a sequence of questions upon
the user. These approaches produce very crisp queries
that are also not responsive to drift in the user’s
intentions.

CRITIQUE QUERY ENGINE
Our list query engine was specifically designed to reflect
the nature of the user dialog by controlling the ranking of
items in the list based on the user’s utterances. An
object, which we call an utterance, is used to model
every critique command made by the user in a given
session. Each utterance object contains the user’s spoken
text, a list of attribute value distributions that define how
to critique each of the mentioned attributes, and an
importance weight. A history of recent utterances is
maintained. List items are ranked based on their
relationship to this utterance history.

Figure 2 shows a sample utterance history where each
line in the table represents a single utterance made by the
user. Each time the user utters a new critique command,
an utterance object is added to the top of the history and
the entire list of data items must be re-ranked according

134 Volume 4, Issue 2

to how well they evaluate against the utterance history.
As utterances get older, they become less important to
the ranking of list items.

 Utterance Distribution Weight

1 “Bedrooms
is 3”

1.0

2 “Rent is less
than $500”

0.95

… … …. …
Figure 2 - Sample utterance history

Attribute Value Distributions
Each utterance type defines a distribution over the set of
possible attribute values. These attribute value
distributions model the user’s preference for a given
attribute as specified in the utterance. These distributions
are somewhat different for distance-comparable attribute
types than they are for numeric attributes. In describing
these distributions we consider separately the equality
and inequality utterances.

Equality Utterances
In an equality utterance, the user speaks about a specific
attribute value such as “bedrooms is one”, “like rent”, or
“don’t like city”. For the “is” and “like” utterances the
attribute value distribution is shown in Figure 3. The
“don’t like” distribution is shown in Figure 4.

Distributions range from 0.0 (inappropriate values) to 1.0
(most appropriate values). The distributions are centered
on the value V, which is the attribute value mentioned by
the user. Because we want a fuzzy rather than an exact
reference to the value V, we use a piecewise linear
distribution around V. The width W of the area of
interest is defined as half of the standard deviation
(2/σ) of the values for the given attribute.

Using these distributions we can define a function
utter(U,I), where U is an utterance from the history and I
is a list item to be evaluated. In the case of these simple
equality utterances, the utter function returns the
distribution value for the appropriate attribute value of I.
In the case of utterances that reference an entire object,
such as “don’t like apartment,” the utter function is the
average of the distributions for all attributes of the item I.

In the case of distance-comparable attributes such as
cities, there is no ordering of the values. However, we
can compute a distance between any two values for the
attribute. For such attributes we can use the distributions
shown in Figures 5 and 6. These are distributions on the
distance between the value V and all other values. The

width W is 2/σ using the average of all distances
between attribute values in place of the standard
deviation.

Figure 3 – Equality Distribution

Figure 4 – “Don’t Like” distribution

Figure 5 – Distance-comparable equality

Figure 6 – Distance-comparable “Don’t like”

Figure 7 – “Less than” distribution

Figure 8 – “Greater than” distribution

Volume 4, Issue 2 135

Inequality Utterances
The inequality utterances include statements like
“bedrooms greater than 1”, “lower rent” or “price
between $100,000 and $500,000”. In designing these
distributions, we must take into account that users are
fuzzy in what they intend. Asking for rent less than $500
does not mean that the user would refuse an otherwise
great apartment that rented for $510. The distributions
for “less than” and “greater than” are shown in Figures 7
and 8. Remember that “lower” and “higher” are
shorthand utterances for these same distributions.

As with the equality utterances, the distribution is
focused on the value V, which is the value expressed by
the user. Since these distributions are symmetric, we will
only explain the distribution for “less than”.

In designing these distributions, there are two goals. The
first is to account for the fact that user statements are
only approximate. The user may accept a slightly higher
rent than specified. This approximate behavior is
accounted for by the α point in the distribution. As a
secondary goal we have a desire to focus the user’s
search more rapidly. In such a case we want to push the
desired values away from the specified value to sample
more broadly. For example, when a user specifies rent
less than $500, we have no idea how much less is
desirable. For this reason we want to push towards values
that are much lower rather than just a little lower. If the
result is undesirable, the user can so specify using a
subsequent “higher” or “greater than” utterance to push
back the other way. This pushing is handled by the
β portion of the distribution.

On the α side of the distribution the width 5/σ=W .
This is much smaller than equality because we still want
to strongly favor the user’s expressed wishes. Note that
the distribution value at the α point is 0.1 rather than
0.0. The distribution slopes off to zero at the maximum
(for less than). Subsequent utterances may provide
stronger weight to other attributes. This slope will still
tend to favor smaller values even if they are larger than
what the user requested. Our goal is to provide the user
with the best selection we can, given the data actually
available in the list.

The β portion of the distribution is attempting to push
towards more interesting choices for the user. We
compute the β position of the “less than” distribution as

)*min)((F−= V −Vβ , where is our “push
factor”. In the current implementation . This
pushes interesting values some percentage of the distance
between V and the minimum value. The

F
F 5.0=

β point is quite
effective when the utterance history contains a “less
than” and a “greater than” utterance for the same

attribute. The slopes to the β points of each utterance
combine to form a peak in the total distribution close to
half way between the expressed bounds.

(

The final inequality is the “between” utterance. This has
the distribution shown in Figure 9. It has similar
approximate properties to the “greater than” or “less
than”. The width 5/σ=W .

Figure 9 – “Between” distribution

Time Decay
As users review data, think about their goals, or just
change their minds they tend to shift their intended
search predicate. Frequently in conversation people do
not announce such a shift, it is just inferred as time goes
by. To accommodate this behavior we let utterances
decay in importance over time. Each new utterance is
given a weight of 1.0 and all previous utterances have
their weight reduced by a decay factor. In our current
implementation the decay factor is 5%. Setting the decay
very high (for example 50%) causes prior statements to
rapidly become irrelevant. Setting it too low (for example
1%) causes the query to be influenced by statements the
user can no longer remember having said. Our current
setting of 5% seems to work, but we have not explored
this in depth.

Ranking computation
The utterance history, the utterance distributions, and the
time decay weights all combine together to produce a
ranking of each item in the list. This ranking of a data
item is the weighted sum of evaluations of the data item
against each utterance in the history. The relevance of a
data item against an utterance is equal to the factor of the
evaluation of the distribution function and the weight.

∑
∈

=
utterancesU

weightUIUutterIrank .*),)(

Example
Using the data list in Figure 10, we take each item and
evaluate it against every utterance in the history from
Figure 11.

 City Rent Bedrooms Relevance
1 Provo $200 1 1.0
2 Orem $500 4 0.9
3 Salt Lake $800 3 0.3

Figure 10 - sample data list

136 Volume 4, Issue 2

 Utterance Distribution Weight

1 “Bedrooms
is 3”

1.0

2 “Rent is less
than $500”

0.95

… … …. …
Figure 11: Sample utterance history

Figure 12: Utterance 1 distribution

Figure 13: Utterance 2 distribution

Apartment 1 with bedrooms = 1 is evaluated against
utterance 1 (see Figure 12), which returns a value of 0.0.
The value is then multiplied by the importance weight of
the utterance, which yields a relevance of r1 = 0 * 1.0 =
0. Apartment 1 with rent = $200 is then evaluated
against utterance 2 (see Figure 13), which yields a
relevance of r2 = 1.0 * 0.95 = 0.95. The total relevance
of apartment 1 is:

• R = r1 + r2 = 0 + 0.95 = 0.95

Apartment 2 with bedrooms = 4 is evaluated against
utterance 1 (see Figure 12), which returns a value of 0.3.
The value is then multiplied by the importance weight of
the utterance, which yields a relevance of r1 = 1.0 * 0.3 =
0.3. Apartment 2 with rent = $500 is then evaluated
against utterance 2 (see Figure 13), which yields a
relevance of r2 = 0.9 * 0.95 = 0.855. The total relevance
of apartment 2 is:

• R = r1 + r2 =0.3 + 0.855 = 1.155

The ranking for Apartment 3 is computed in a similar
fashion. After the relevance of each item is recomputed
the list is resorted based on relevance. The new ordering
would now be as shown in Figure 14.

 City Rent Bedrooms Relevance
2 Orem $500 4 1.155
3 Salt Lake $800 3 1.0285
1 Provo $200 1 0.95

Figure 14 - Reranked data list

Distance-comparable Attribute Metrics
Both numeric and distance-comparable values are
supported under the current implementation of our list
widget. The numeric attributes are handled quite simply
using the distributions described previously. Non-
numeric attributes are more problematic. Purely nominal
attributes such as the manufacturer of an automobile or
the owner of an apartment complex, where there is no
distance metric between values, are handled using a
simple metric. If two values are equal then their distance
is zero other wise the distance is huge. Using this metric,
users can express their likes and dislikes, but little else.

String Attributes
Strings are an interesting case. They can have a
lexicographical order, but that may not be meaningful for
the problem. A user could use less than or greater than to
focus in on a particular apartment complex name using
the alphabetical order. Using alphabetic ordering in a
speech system where the user cannot see the spelling is
very difficult.

We think that strings are more effectively handled using
some distance metric for similar sound or meaning.
Various metrics such as minimal edit distance, longest
common substring, longest common subsequence, and a
weighted alphabetical distance can be used. Using the
“equals” or “like/don’t like” utterances, the user can get
string values that are close to what they spoke without
having to say the word exactly right.

Semantically named attribute values
The most interesting class of attribute values is the names
of objects, such as a city. If we make the name of a city
be a surrogate for a particular geographic location, we
can compute the Euclidian distance between cities and
use that as a distance metric. We can compare two
species of animals based on their distance from each
other in a phylogenetic tree.

In studying several applications of our list widget we
have encountered the problem of multiple definitions of
distance. For example a comparison of two school
districts can use their geographic distance. However,
when people dislike a school district it is frequently for
academic reasons. We may then use the difference
between average standardized exam scores a distance
metric. We now have two distance metrics that are
equally valid for various classes of user. One would like
to somehow use both and automatically discover the
metric most appropriate for the situation. However, we
do not yet have a general solution for this case.

SPOKEN FEEDBACK
At the heart of our list widget is speaking a description of
the highest ranked list item to the user. The problem is
that most useful data sets have many more attributes than
can be spoken in a timely fashion. The user’s ability to

Volume 4, Issue 2 137

remember everything spoken decreases as the spoken
feedback gets longer. The temporal nature of speech
requires us to limit what is spoken to the user while at the
same time allowing the user to control what and how
much is spoken back. Certain attributes may be more
important to a particular user than others; therefore we
must ensure that these attributes are included in the
feedback to the user.

To provide minimal feedback to the user that contains
important attributes, we developed a simple algorithm
based once again on the utterance history. Each attribute
has a weight as to its importance in spoken feedback. The
widget specification provides initial weights to seed the
algorithm. Only those items with an importance value
greater than a set threshold (we used 0.5) are spoken back
to the user. (It should be noted that this feedback
importance value is not the same as the weight assigned
to each utterance.) Each time the user includes an
attribute in an utterance, that attribute is given an
importance value of 1.0. This is the case not only with
critique commands but also commands that request
attribute values. Each utterance thereafter that doesn’t
include that attribute causes the importance of that
attribute to decay by 10%. Attributes are spoken back in
their order of importance. This way the user always
hears first what he has most recently spoken about.

To illustrate how this works, consider the following user
session with an importance threshold of 0.8 (0.8 is high,
but serves well to limit the example):

 C7: “Car make is Honda, year is 1999, price is

$11,000”

Make Model Year Price Mileage
1.0 0.0 1.0 1.0 0.0

Make, year, and price are labeled in the data as default
important attributes and are given importance values of
1.0.

 U8: “What is mileage?”
 C8: “mileage is 52,000”

Make Model Year Price Mileage
0.9 0.0 0.9 0.9 1.0

Mileage importance is set to 1.0, while all the other
attributes decay by 10%. Mileage will be spoken first the
next time the computer give feedback.

U9: “Next”
C9: “Car mileage is 53,361, make is

Volkswagen, year is 1997, price
is $15,750”

U10: “What is model?”
C10: “Model is Jetta GLS”

Make Model Year Price Mileage
0.81 1.0 0.81 0.81 0.9

Model importance is set to 1.0, while all the other
attributes decay by 10%.

U11: “Like model”
C11: “Car model is Jetta GLS, mileage is

53,361”

Make Model Year Price Mileage
0.729 1.0 0.729 0.729 0.81

The last feedback from the system only included model
and mileage since their importance values are greater
than the threshold we initially set of 0.8.

EVALUATION
We have performed a rough usability evaluation on our
current list widget implementation. The specific
questions that we wanted to answer with this evaluation
was whether beginning users could learn the technique
rapidly and use it effectively on lists of data that are
normally unreasonable using speech. This was not a
controlled experiment to compare competing approaches.

Using the WWW we extracted two example lists. The
first is a list of 100 automobiles for sale. Each
automobile has 11 attributes, including the make of the
auto, price, number of miles, color, etc. Our second list is
122 student apartments offered for rent each with 13
attributes, including the rent, deposit required, distance
from campus, number of bedrooms, etc.

For our usability test we invited in two groups of 5. The
testers were university students from non-technical
majors that had no prior experience with spoken
language interfaces. We wanted to know how rapidly
someone with limited instruction could accomplish
information tasks using our spoken list widget.

We used the IBM ViaVoice recognition engine. Each
user went through the speaker-dependent recognizer
training before these tests to reduce recognizer failures as
much as possible. Our work is focused on dialog design,
not recognizer performance.

Our primary measure was the amount of time that it took
to complete each task. As a benchmark we used the total
time required to speak the entire list. It takes an average
of 3 seconds to speak each attribute. The total speaking

138 Volume 4, Issue 2

time would be about 80 minutes for the entire apartment
list and 55 minutes for the cars. Even if listening to the
whole list were an effective technique, the time is
prohibitive.

Group I was given the following series of tasks

3 tasks from the apartment list with only the value-
specific commands (less, greater, equals)

3 tasks from the car list with only example-relative
commands (like, don’t like)

2 open-ended tasks with the apartment list using any
commands they want

2 open-ended tasks with the car list using any
commands

Group II was given the same tasks with the order of the
lists reversed.

This test was designed to provide as much usability
information as possible rather than for making controlled
comparisons. Before each test, the users were given a
one-page brief list of all of the available commands for
the list widget.

Completion rates
Each tester performed 10 tasks for a total of 100 tasks.
Out of those 100 tasks, 9 tasks were not completed
within 10 minutes. Group I’s use of example-relative
commands on the car list accounted for 5 of the 9
failures. These 5 failures are all traceable to problems
with nominal attributes such as model or color that do not
have a distance metric. If a user is looking for a black
vehicle, their only option was to say “don’t like color”
for every color until black is finally spoken. It is quite
clear that for nominal attributes, the users must be able to
specifically request a value.

Out of the 10 people tested, 6 of them completed all 10
tasks in less than 5 minutes. Of the remaining 4 people 1
failed to complete 3 of the tasks in less than 5 minutes
and the remaining 3 people failed to complete 2 tasks.
All testers learned both sets of commands within the first
few tasks and were reasonably effective after that. Within
the inherent timing constraints of speech, our spoken list
widget performed quite well on large amounts of data
with inexperienced users.

 Apartments Cars

Task
Ave

seconds
Possible

hits
Ave

seconds
Possible

hits
1 470 7% 241 1%
2 205 2% 106 2%
3 258 1% 61 3%

Table 1: Value-specific task times

Value-specific results
Both groups started with only the value-specific
commands. Each of the three tasks asked about three
attributes of the objects being searched. The performance
times are as shown in Table 1.

Testers that used value-specific commands on the car list
performed quite well and learned quickly. With the
exception of one person on their first task, all users
completed these tasks in less than 200 seconds (3.3
minutes). The “possible hits” data is the percentage of
the list items that could satisfy the task criteria.
Performance times are driven more by experience with
the dialog than by the hit rate.

Example-relative commands
Both groups used the example-relative commands on
their second set of tasks. As discussed earlier, group I’s
use of like/don’t like commands on the nominal attributes
of cars performed very poorly. The high rate of timeouts
makes the other data irrelevant.

On the other hand group II performed quite well on the
apartment data. These times are better than those for the
value-specific commands.

 Apartments Cars

Task
Ave

seconds
Possible

hits
Ave

seconds
Possible

hits
1 208 7% 473 1%
2 159 2% 346 2%
3 200 1% 315 3%

Table 2: Example-relative task times

The data does not provide any clear evidence whether the
value-specific or example-relative commands performed
better.

Open-ended questions
Our last sets of tasks were open-ended. We wanted to see
how users would perform based on their own desires and
interests. We chose apartments and cars because students
have an inherent interest in these items and their own
personal biases on these subjects.

For the car list we posed two tasks. The first was to test
the user’s own desires. Each user was given a sheet with
a list of the attributes of a car. They were asked to fill out
the sheet with their desired car. The testers were then
asked to use the car list to locate a car they would like to
buy. They were then given an artificial scenario and
asked to find a car that fit that scenario. A similar
strategy was used with the apartment list.

Volume 4, Issue 2 139

 Apartments cars
self -data 175 363

artificial 140 161
Table 3: Open-ended tasks – completion time

Testers completed their tasks in a timely manner. From
the video tapes we did find that half of the testers
changed their minds about what they wanted after
working with the data. We are not sure if this is a
realistic shift or tester fatigue. It was clear that the
utterance history decay algorithm readily handled shifts
of focus.

Command usage
A review of the videotapes showed the following
distribution of command utterances by users.

Critiques 60%
Value Queries 30%
List Navigation 6%
Undo 4%
Table 4: Command usage

Most of the user interaction involved actual critique
statements about what the user wanted. The second most
popular were value queries for information about
attributes not spoken in the initial presentation of a list
item. The ability to scroll through the top choices in the
ranked list was rarely used. After our preliminary tests,
we added an Undo command to allow users to recover
from recognition errors. This command was infrequently
used. Recognition errors were not a large problem, and in
many cases continued use of the critique commands
overcame the problem naturally.

SUMMARY
We have described a spoken dialog system for accessing
long lists of attributed objects. The system works by
allowing users to comment on objects and their attribute
values rather than formulating a query. The fuzzy nature
of the query model facilitates location of objects when
the user has imprecise goals. The use of a time-decay on
utterances allows users to shift their focus without
explicitly instructing the system.

The spoken language list widget has demonstrated its
ability to access long lists of attributed data items. Users
learned the technique rapidly. The example-relative
commands are ineffective when used with attributes that
have no distance metric to compare values.

REFERENCES

1. Buntschuh, B., Kamm, C., Di Fabbrizio, G., Abella,

A., Mohri, M., Narayanan, S., Zeljkovic, I., Sharp,
R. D., Wright, J.H., Marcus, S., Shaffer, J., Duncan,

R. and Wilpon, J.G., “VPQ: a spoken language
interface to large scale directory information”, Proc.
ICSLP, Sydney, 1998.

2. Burke, R., Hammond, K., and Young, B. ‘Knowledge-

based navigation of complex information spaces’, In
Proceedings of the 13th National Conference on
Artificial Intelligence AAAI96, pp. 462-468 (1996).

3. Burke R., ‘The Wasabi Personal Shopper: A Case-

Based Recommender System’, in: Proceedings of the
16th National Conference on Artificial Intelligence
AAAI99 (1999).

4. Chu, W., Yang, H., Chiang, K., Minock, M., Chow,

G., and Larson, C. “CoBase: A scalable and
extensible cooperative information system,” Journal
of Intelligent Information Systems, vol. 6, pp. 223-
259 (May 1996).

5. Fuhr, Norbert, “A Probabilistic Framework for Vague

Queries and Imprecise Information in Databases,” in
Proceedings of the 16th International Conference on
Very Large Databases, pp. 696-707, (August 1990).

6. Gaasterland, T., Godfrey, P., Minker, J., “An

Overview of Cooperative Answering,” Journal of
Intelligent Information Systems, vol. 1, no. 2, pp.
123-157, (1992).

7. Gaasterland, T., Godfrey, P., Minker, J., “Relaxation

as a Platform of Cooperative Answering,” Journal of
Intelligent Information Systems, vol. 1, no. 3, pp.
293-321, (1992).

8. Göker, M. H., Thompson, C. A., “Personalized

Conversational Case-Based Recommendation,” in
Advances in Case-Based Reasoning. Proceedings of
the 5th European Workshop on Case-Based
Reasoning, EWCBR 2000, Trento, Italy. LNAI
(1998).

9. Resnick P., Varian H. (eds), ‘Recommender Systems’,

Communications of the ACM, Vol. 40, No. 3, March
(1997).

10. Rosenfeld, R., Olsen, D., and Rudnicky, A.

‘Universal Speech Interfaces’ interactions (Oct
2001).

11. Singh, S., Litman, D., Kearns, M., Walker, M.,

"Optimizing Dialogue Management with
Reinforcement Learning: Experiments with the
NJFun System", Journal of Artificial Intelligence
Research, vol. 16, pp. 105-133, (2002).

140 Volume 4, Issue 2

