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ABSTRACT 
Spoken language interfaces provide highly mobile, small 
form-factor, hands-free, eyes-free interaction with 
information. Uniform access to large lists of information 
using spoken interfaces is highly desirable, but 
problematic due to inherent limitations of speech. A 
speech widget for lists of attributed objects is described 
that provides for approximate queries to retrieve desired 
items. User tests demonstrate that this is an effective 
technique for accessing information using speech. 
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INTRODUCTION  
The ICE (Interactive Computing Everywhere) project is 
focused on building infrastructure and interactive 
techniques that allow people to interact with information 
and services from a variety of physical situations. We see 
speech as a major component of such efforts. The major 
benefits of speech are that it is independent of physical 
posture, can be hands/eyes free, requires only a small 
physical size, and has very low power requirements.  
 
Our approach is to create a set of “speech widgets” that 
can be readily composed to create a variety of 
applications, rather than natural language dialogs. Such 
widgets would have a standard “hear and say,” much like 
the “look and feel” standards in graphical user interfaces 
[10].  With a standardized widget set, developers can 
spend a significant amount of time working out the 
usability of the widgets. This effort can then be easily 
leveraged across all uses of the widget.  
 
Our approach to such speech widgets is to organize our 
interactions around information structures. We see the 
manipulation of information as our guiding interactive 
paradigm. Widgets that handle atomic values such as 
numbers, dates, times, menus, and selection from small, 
enumerated lists are quite common. It is also common to 
collect such components together into a tree that provides 

standard navigation mechanisms. Such structures create 
essentially fixed, finite sets of information. What are 
missing are standard mechanisms for working with large 
amounts of information using spoken language 
interfaces.  
 
The simplest data structure that can handle an arbitrary 
amount of information is the list. However, lists are very 
problematic in spoken language interfaces. Listening to 
list items is much slower than visually scanning that 
same information. The transient nature of speech, 
coupled with limits on short-term memory makes it 
difficult for users to maintain a sense of context. Despite 
these difficulties, there is still a very strong need to 
access large amounts of information through speech. 
 
Our model for lists is a table structure like that shown in 
Figure 1. There is a list of objects and a fixed set of 
attributes for those objects. However, in the problems we 
are interested in, there are tens to thousands of items and 
possibly tens of attributes. 

 
Name Age Height
Fred 22 72 
Joan 17 68 

Gerald 40 73 
Jackie 25 66 

… … … 
Figure 1: A Tabular List 

 
It is infeasible to scroll through such a list because 
speech is such a slow feedback channel. The only 
possible approach is to search. However, short-term 
memory makes formulating a query difficult. Speaking a 
query in a restricted natural language is possible, but that 
leads to long complicated utterances. The need for 
feedback to handle recognition errors means that the 
query must exist as a separate object that the user must 
remember and manipulate. The spoken dialog becomes 
focused on the query as much as on the information 
being sought.  
  
Queries are problematic for users even in graphical 
situations. Users are frequently vague about the things 
that they are searching for. As users peruse the data their 
sense of what they want will drift. While searching for a 
car of a particular make and year, desires will shift as the 
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sticker price becomes apparent. A formal query is not 
conducive to these needs.  
 
Our approach to manipulating lists is to present an 
information object to the user. The user then critiques the 
object by commenting on desired values for the 
attributes. After each critique utterance we rank objects 
based on the recent history of user comments and present 
the most likely object. The user’s attention is always 
focused on the information object at hand rather than on 
an auxiliary query object.  

QUERY BY CRITIQUE 
A table representation of information like that shown in 
Figure 1 is adaptable to a wide variety of applications. 
There are three general interactive tasks that relate to 
such lists.  

• Editing and modifying the list or its elements 
• Getting an overall sense of the content of the list 
• Locating desired items in the list. 

In large lists, the ordering is rarely important other than 
sorting in various ways. Therefore insertion of new items 
is simply a case of specifying the attributes of the new 
object. This is an instance of filling a fixed set of fields, 
for which there are already good speech dialog forms. 
Deleting items involves selecting the items and then 
specifying deletion. The hard part is selecting the items 
to begin with. Modifying items is similarly dominated by 
the selection task. All the really hard parts involve 
locating desired items. We will focus on the selection 
task. 
 
Getting an overall sense of the contents of a list is an 
important task. What is required is a summary of a list of 
items. Though this is of value, we have not studied this 
task.  
 
This work is focused on designing spoken language 
dialogs that help users find desired items.  There are two 
fundamental approaches to this problem. The first is to 
allow the user to specify some predicate and then report 
back on the items that satisfy that predicate. This is the 
traditional form-query approach. The second strategy is 
to define a ranking on the items and report them in 
highest to lowest order. 
 
Predicate-based queries 
Consider a user trying to locate an apartment for rent. 
Using a predicate approach, we might have the following 
dialog: 
 U1: “rent less than $500” 
 C1: “there are 35 items” 
 U2: “city is Spanish Fork” 
 C2: “there are 0 items” 
 
At this point the user can become a little confused. There 
is no information about whether there might be 
apartments for $550 or possibly in a town near Spanish 

Fork. The rigidity of the predicate is not helping the user 
solve their problem. To break the impasse the user might 
say,  
 U3: “rent less than $525.”  
 C3:  “there are 0 items” 
We now have a query algorithm problem. By implicitly 
intersecting all of the user’s utterances, this new 
utterance will not expand the selected set. At this point 
the user is now confused about what the query really is. 
We can have the system start to speak the query, but if 
more than 3 attributes become involved, the time spent 
listening to the current query starts to dominate 
everything else. 
 
A second problem arises when the user wishes to modify 
the query. We must add dialog that removes or modifies 
components of the predicate. We soon start to have more 
dialogs about queries than we do about the actual 
information the user is working with.  We can eliminate 
the notion of a query object by having users speak 
queries as full sentences, such as “Apartment with rent 
less than $500, bedrooms greater than 1, air-conditioning, 
parking is covered, and city is Spanish Fork.” Not only 
does such a sentence pose recognition problems, it is also 
very hard for a user to create and correctly understand. 
 
One approach to such list queries is to simplify the query 
model. Instead of conjunctions and disjunctions of simple 
predicates, queries can be modeled as upper and lower 
bounds on each attribute. Equality is a special case where 
upper and lower are the same. This simplifies what the 
user must understand and what must be spoken. For the 
most part the query can now be changed by new 
statements. Utterance U3 would move the upper bound 
rather than add a new conjunction. This simplified query 
model does not correctly handle attributes without a 
sorted order.  
 
A key difficulty that remains is the fact that the system is 
still reporting either too many items to use effectively or 
no items at all. The user then must guess at possible 
query modifications that will yield some information. 
This is not acceptable.  
 
Search by Ranking 
An alternative approach is to provide a ranking on the 
data items and let the user work down the list from 
highest to lowest. In this formulation the user is always 
working in terms of concrete data. For example, they are 
continually hearing about possible apartments.  Our 
dialog may proceed as follows. 
 U4: “rent less than $500” 
 C4: “apartment rent is $500, city is Salt Lake, 

bedrooms is 1” 
 U5: “city is Spanish Fork” 
 C5:  “apartment city is Spanish Fork, rent is 

$600” 
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In this dialog the system is always attempting to satisfy 
the requirements that the user is expressing but is 
violating some of them in cases where they cannot all be 
satisfied. In C5 the system has suggested an apartment 
that is in Spanish Fork but violates the rent requirement. 
The user finds the rent in C5 to be a little high and might 
say: 
 
 U6: “next” 
 C6: “apartment city is Mapleton, rent is $550” 
 
The next most highly ranked item is spoken. Mapleton is 
a town that is close to Spanish Fork. This second choice 
sacrificed the city requirement in favor of rent closer to 
$500.  
 
In this ranked approach there is no explicit query object 
that the user must understand. The user’s utterances 
control the ranking. However, as a dialog proceeds the 
user’s desires may shift. The user may recognize that rent 
is higher than they expected and start focusing on other 
issues, such as parking facilities for their new car. The 
user may also give up on Spanish Fork and decide to get 
a job in Salt Lake thus changing everything. Our 
approach to this shift of interest is to have the importance 
of user utterances decay over time. More recent 
statements have precedence over earlier ones. Thus the 
user’s shift of focus is implied by the user’s current 
utterances.  
 
It is this more fuzzy approach to queries that we have 
chosen for our list speech widget. The speaker’s 
expressed desires are used to compute a ranking on the 
items.  We believe that this form of search dialog is more 
natural and closer to how one would speak with a real 
estate agent or automobile salesman. 
 
Speech Feedback 
There are many attributes of an item such as an 
apartment. These include security deposit, air 
conditioning, whether there is a pool, etc. Speaking all of 
these attributes to a user will create overload. Some 
attributes are more important to a particular person than 
others. Some are desirable to know but not as important 
in selecting an apartment.  
 
In computer response C4 the number of bedrooms was 
mentioned and then omitted in C5 and C6. This is 
because the user had not expressed any interest in this 
attribute. It must be possible, however, for the user to 
find out about any of these attributes. In C5 and C6 the 
spoken order of the attributes have changed to reflect the 
user’s stated interests. The system must also track what 
the user is interested in so that object feedback is tailored 
to those interests. 
 

QueryByCritique language 
Based on the above discussion we can now define the 
spoken language supported by our list widget. There are 
four types of commands that the user can say. 

• Attribute critique 
• Attribute Inquiries 
• List navigation 
• Help 
 

Attribute critique commands 
The heart of the widget is in the attribute critique 
commands. These commands reflect two different ways 
in which people approach problems. In one approach the 
user comes to the system with definite attributes in mind 
such as the amount of rent they can afford and the 
number of bedrooms that they need. In other scenarios 
the user is fuzzier about their goals. In many situations 
the user is responding to the data and making evaluations 
of its appropriateness. We reflect these approaches in two 
styles of commands, which we term value-specific and 
example-relative. We believe these two classes are each 
suited for different search problems.  
 
The value specific commands have the following forms: 

• <attribute name> less than <value> 
• <attribute name> greater than <value> 
• <attribute name> is <value> 

 
These commands are readily instantiated for virtually any 
application where the attributes have a sorted order that 
is clear to the user. Good examples are rent and number 
of bedrooms.   
 
Some attributes, such as cities, do not have an interesting 
sorted order. Sorting them alphabetically may be 
algorithmically correct, but not at all helpful in our 
example dialogs. There are a broad class of attributes 
which are not ordered, but do have a distance metric. In 
the case of cities we can compare them on the number of 
miles they are apart. For such distance-comparable 
attributes only the “is” command is appropriate.  
 
The example-relative commands implicitly use the 
attributes of the last data object presented by the 
computer.  

• like <attribute name> 
• don’t like <attribute name> 
• like [ this | <object type> ] 
• don’t like [ this | <object type> ] 
• higher <attribute name> 
• lower <attribute name> 

 
The “like” and “don’t like,” commands either attract or 
repel objects with those attribute values. Liking or 
disliking an object is the same as commenting on all of 
the attributes heard about the last object presented. The 
higher and lower commands are shorthand for the greater 
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than and less than commands.  If the apartment last 
spoken has rent of $700, saying “lower rent” is the same 
as saying, “rent less than $700.” The user is referencing 
the current object’s values.  
 
An additional advantage of the example-relative 
commands is that the speech recognizer does not need to 
recognize attribute values. Only a limited command set 
plus the attribute names must be recognized. For example 
“don’t like color” can be more robustly recognized than 
“color is colorName” where the range of color names can 
be very large. 
 
Navigation commands 
These simply move up and down through the current list 
rankings. They are simply “Next” and “Previous.” 
 
Attribute Inquiries 
Most of the dialog fragments require the user to know 
about the available attributes for an object. In addition, 
only a very few attributes can be spoken quickly enough 
while searching. The inquiry commands are: 

• What is <attribute name>? 
• What are the attributes? 
• Describe / More 

 
The “Describe” command will speak the first few 
attributes of an object. The “More” command will speak 
additional attributes.  
  
Help 
Throughout all of our speech widgets, “What can I Say” 
along with “More” will describe all of the commands. 

RELATED WORK 
A practical example of using a spoken language interface 
to access a large amount of data is VPQ (Voice Post 
Query), a system developed by AT&T to provide spoken 
access to their corporate personnel database consisting of 
more than 120,000 entries [1].  VPQ uses natural 
language understanding, dialog control components, and 
dynamic constraint analysis to locate answers to the 
user’s exact query. Our widget takes a much more 
simplistic approach. 
 
Our approach to locating information relevant to the user 
is similar to the system explained in [5], which produces 
a ranking of database objects in response to a query 
containing vague predicates.  In the referenced system, 
the user makes binary relevance judgments about the 
retrieved objects, which the system remembers and uses 
to produce improved rankings.  We apply the same idea 
to a spoken query interface in QueryByCritique in which 
the entire list of data is ranked based on similarities to the 
user’s spoken query.  However, our approach is based on 
more than the user’s binary relevance judgments of 
retrieved objects.  The user is able to critique each 

attribute value and specify just how the system should 
adjust that value.   
 
Intelligent information systems have been created to 
provide users with data that may not be exactly what was 
asked for in a query, but may in fact be relevant to what 
the user is looking for. Cooperative answering systems 
[4,6,7] use generalization, specialization, and relaxation 
of queries to capture related or neighboring information 
from a structured database.  This would resolve the user’s 
vagueness problems but still requires a query to be 
expressed and managed and does not handle drift in user 
intentions. 
 
Solutions to the search problem for speech interfaces 
have been developed for specific applications.  The 
NJFun System [11] was developed to provide users with 
access to information on fun things to do in New Jersey.  
NJFun uses a reinforcement learning approach to 
automatically optimize the dialog policy and help the 
user find what he is looking for quickly.  Our approach 
steers away from dialog optimization and concentrates 
primarily on allowing the user to explore the data.  Our 
dialog consists of basic critique commands made by the 
user and immediate feedback of ranked items to the user.   
 
Similar to reinforcement learning are recommendation 
systems [2,3,9], which can be used for any task that 
requires choice among a large set of predefined items.  
Adaptive Place Advisor [8] is an example of a 
recommendation system in which the user interacts with 
the system to narrow down choices by answering a 
sequence of questions aimed at removing alternatives, 
rather than simply ordering them. QueryByCritique 
grants the user full control over their comments on the 
data rather than imposing a sequence of questions upon 
the user.  These approaches produce very crisp queries 
that are also not responsive to drift in the user’s 
intentions. 

CRITIQUE QUERY ENGINE 
Our list query engine was specifically designed to reflect 
the nature of the user dialog by controlling the ranking of 
items in the list based on the user’s utterances.  An 
object, which we call an utterance, is used to model 
every critique command made by the user in a given 
session.  Each utterance object contains the user’s spoken 
text, a list of attribute value distributions that define how 
to critique each of the mentioned attributes, and an 
importance weight.  A history of recent utterances is 
maintained. List items are ranked based on their 
relationship to this utterance history. 
 
Figure 2 shows a sample utterance history where each 
line in the table represents a single utterance made by the 
user.  Each time the user utters a new critique command, 
an utterance object is added to the top of the history and 
the entire list of data items must be re-ranked according 
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to how well they evaluate against the utterance history.  
As utterances get older, they become less important to 
the ranking of list items. 
 
 

 Utterance Distribution Weight 

1 “Bedrooms 
is 3” 

 
1.0 

2 “Rent is less 
than $500” 

 
0.95 

… … …. … 
Figure 2 - Sample utterance history 

 
Attribute Value Distributions 
Each utterance type defines a distribution over the set of 
possible attribute values.  These attribute value 
distributions model the user’s preference for a given 
attribute as specified in the utterance.  These distributions 
are somewhat different for distance-comparable attribute 
types than they are for numeric attributes. In describing 
these distributions we consider separately the equality 
and inequality utterances. 
 
Equality Utterances 
In an equality utterance, the user speaks about a specific 
attribute value such as “bedrooms is one”, “like rent”, or 
“don’t like city”.  For the “is” and “like” utterances the 
attribute value distribution is shown in Figure 3. The 
“don’t like” distribution is shown in Figure 4. 
 
Distributions range from 0.0 (inappropriate values) to 1.0 
(most appropriate values). The distributions are centered 
on the value V, which is the attribute value mentioned by 
the user. Because we want a fuzzy rather than an exact 
reference to the value V, we use a piecewise linear 
distribution around V. The width W of the area of 
interest is defined as half of the standard deviation 
( 2/σ ) of the values for the given attribute.  
 
Using these distributions we can define a function 
utter(U,I), where U is an utterance from the history and I 
is a list item to be evaluated. In the case of these simple 
equality utterances, the utter function returns the 
distribution value for the appropriate attribute value of I. 
In the case of utterances that reference an entire object, 
such as “don’t like apartment,” the utter function is the 
average of the distributions for all attributes of the item I. 
 
In the case of distance-comparable attributes such as 
cities, there is no ordering of the values. However, we 
can compute a distance between any two values for the 
attribute. For such attributes we can use the distributions 
shown in Figures 5 and 6. These are distributions on the 
distance between the value V and all other values. The 

width W is 2/σ  using the average of all distances 
between attribute values in place of the standard 
deviation. 
 

Figure 3 – Equality Distribution 
 

Figure 4 – “Don’t Like” distribution 
 

Figure 5 – Distance-comparable equality 
 

Figure 6 – Distance-comparable “Don’t like” 
 

Figure 7 – “Less than” distribution 
 

Figure 8 – “Greater than” distribution 
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Inequality Utterances 
The inequality utterances include statements like 
“bedrooms greater than 1”, “lower rent” or “price 
between $100,000 and $500,000”.  In designing these 
distributions, we must take into account that users are 
fuzzy in what they intend. Asking for rent less than $500 
does not mean that the user would refuse an otherwise 
great apartment that rented for $510. The distributions 
for “less than” and “greater than” are shown in Figures 7 
and 8. Remember that “lower” and “higher” are 
shorthand utterances for these same distributions. 
 
As with the equality utterances, the distribution is 
focused on the value V, which is the value expressed by 
the user. Since these distributions are symmetric, we will 
only explain the distribution for  “less than”.  
 
In designing these distributions, there are two goals. The 
first is to account for the fact that user statements are 
only approximate. The user may accept a slightly higher 
rent than specified. This approximate behavior is 
accounted for by the α  point in the distribution. As a 
secondary goal we have a desire to focus the user’s 
search more rapidly. In such a case we want to push the 
desired values away from the specified value to sample 
more broadly. For example, when a user specifies rent 
less than $500, we have no idea how much less is 
desirable. For this reason we want to push towards values 
that are much lower rather than just a little lower. If the 
result is undesirable, the user can so specify using a 
subsequent “higher” or “greater than” utterance to push 
back the other way. This pushing is handled by the 
β portion of the distribution.  
 
On the α side of the distribution the width 5/σ=W . 
This is much smaller than equality because we still want 
to strongly favor the user’s expressed wishes. Note that 
the distribution value at the α point is 0.1 rather than 
0.0. The distribution slopes off to zero at the maximum 
(for less than). Subsequent utterances may provide 
stronger weight to other attributes. This slope will still 
tend to favor smaller values even if they are larger than 
what the user requested. Our goal is to provide the user 
with the best selection we can, given the data actually 
available in the list.  
 
The β portion of the distribution is attempting to push 
towards more interesting choices for the user. We 
compute the β position of the “less than” distribution as 

)*min)(( F−= V −Vβ , where is our “push 
factor”. In the current implementation . This 
pushes interesting values some percentage of the distance 
between V and the minimum value.  The 

F
F 5.0=

β point is quite 
effective when the utterance history contains a “less 
than” and a “greater than” utterance for the same 

attribute. The slopes to the β points of each utterance 
combine to form a peak in the total distribution close to 
half way between the expressed bounds.  

(

 
The final inequality is the “between” utterance. This has 
the distribution shown in Figure 9. It has similar 
approximate properties to the “greater than” or “less 
than”. The width 5/σ=W .  
 

Figure 9 – “Between” distribution 
  
Time Decay 
As users review data, think about their goals, or just 
change their minds they tend to shift their intended 
search predicate. Frequently in conversation people do 
not announce such a shift, it is just inferred as time goes 
by. To accommodate this behavior we let utterances 
decay in importance over time. Each new utterance is 
given a weight of 1.0 and all previous utterances have 
their weight reduced by a decay factor. In our current 
implementation the decay factor is 5%. Setting the decay 
very high (for example 50%) causes prior statements to 
rapidly become irrelevant. Setting it too low (for example 
1%) causes the query to be influenced by statements the 
user can no longer remember having said. Our current 
setting of 5% seems to work, but we have not explored 
this in depth. 
 
Ranking computation 
The utterance history, the utterance distributions, and the 
time decay weights all combine together to produce a 
ranking of each item in the list. This ranking of a data 
item is the weighted sum of evaluations of the data item 
against each utterance in the history.  The relevance of a 
data item against an utterance is equal to the factor of the 
evaluation of the distribution function and the weight.   

∑
∈

=
utterancesU

weightUIUutterIrank .*),)(  

Example 
Using the data list in Figure 10, we take each item and 
evaluate it against every utterance in the history from 
Figure 11.   
 

 City Rent Bedrooms Relevance 
1 Provo $200 1 1.0 
2 Orem $500 4 0.9 
3 Salt Lake $800 3 0.3 

Figure 10 - sample data list 
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 Utterance Distribution Weight 

1 “Bedrooms 
is 3” 

 
1.0 

2 “Rent is less 
than $500” 

 
0.95 

… … …. … 
Figure 11: Sample utterance history 

 

Figure 12: Utterance 1 distribution 
 

Figure 13: Utterance 2 distribution 
 

Apartment 1 with bedrooms = 1 is evaluated against 
utterance 1 (see Figure 12), which returns a value of 0.0.  
The value is then multiplied by the importance weight of 
the utterance, which yields a relevance of r1 = 0 * 1.0 = 
0.  Apartment 1 with rent = $200 is then evaluated 
against utterance 2 (see Figure 13), which yields a 
relevance of r2 = 1.0 * 0.95 = 0.95.  The total relevance 
of apartment 1 is: 

• R = r1 + r2 = 0 + 0.95 = 0.95 
 

Apartment 2 with bedrooms = 4 is evaluated against 
utterance 1 (see Figure 12), which returns a value of 0.3.  
The value is then multiplied by the importance weight of 
the utterance, which yields a relevance of r1 = 1.0 * 0.3 = 
0.3.  Apartment 2 with rent = $500 is then evaluated 
against utterance 2 (see Figure 13), which yields a 
relevance of r2 = 0.9 * 0.95 = 0.855.  The total relevance 
of apartment 2 is: 

• R = r1 + r2 =0.3 + 0.855 = 1.155 
 
The ranking for Apartment 3 is computed in a similar 
fashion. After the relevance of each item is recomputed 
the list is resorted based on relevance.  The new ordering 
would now be as shown in Figure 14. 
 

 City Rent Bedrooms Relevance 
2 Orem $500 4 1.155 
3 Salt Lake $800 3 1.0285 
1 Provo $200 1 0.95 

Figure 14 - Reranked data list 
 

Distance-comparable Attribute Metrics 
Both numeric and distance-comparable values are 
supported under the current implementation of our list 
widget. The numeric attributes are handled quite simply 
using the distributions described previously. Non-
numeric attributes are more problematic. Purely nominal 
attributes such as the manufacturer of an automobile or 
the owner of an apartment complex, where there is no 
distance metric between values, are handled using a 
simple metric. If two values are equal then their distance 
is zero other wise the distance is huge. Using this metric, 
users can express their likes and dislikes, but little else. 
 
String Attributes 
Strings are an interesting case. They can have a 
lexicographical order, but that may not be meaningful for 
the problem. A user could use less than or greater than to 
focus in on a particular apartment complex name using 
the alphabetical order. Using alphabetic ordering in a 
speech system where the user cannot see the spelling is 
very difficult.  
 
We think that strings are more effectively handled using 
some distance metric for similar sound or meaning. 
Various metrics such as minimal edit distance, longest 
common substring, longest common subsequence, and a 
weighted alphabetical distance can be used. Using the 
“equals” or “like/don’t like” utterances, the user can get 
string values that are close to what they spoke without 
having to say the word exactly right.  
 
Semantically named attribute values 
The most interesting class of attribute values is the names 
of objects, such as a city. If we make the name of a city 
be a surrogate for a particular geographic location, we 
can compute the Euclidian distance between cities and 
use that as a distance metric.  We can compare two 
species of animals based on their distance from each 
other in a phylogenetic tree.  
 
In studying several applications of our list widget we 
have encountered the problem of multiple definitions of 
distance. For example a comparison of two school 
districts can use their geographic distance. However, 
when people dislike a school district it is frequently for 
academic reasons. We may then use the difference 
between average standardized exam scores a distance 
metric. We now have two distance metrics that are 
equally valid for various classes of user. One would like 
to somehow use both and automatically discover the 
metric most appropriate for the situation. However, we 
do not yet have a general solution for this case. 

SPOKEN FEEDBACK  
At the heart of our list widget is speaking a description of 
the highest ranked list item to the user. The problem is 
that most useful data sets have many more attributes than 
can be spoken in a timely fashion. The user’s ability to 
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remember everything spoken decreases as the spoken 
feedback gets longer.  The temporal nature of speech 
requires us to limit what is spoken to the user while at the 
same time allowing the user to control what and how 
much is spoken back.  Certain attributes may be more 
important to a particular user than others; therefore we 
must ensure that these attributes are included in the 
feedback to the user. 
 
To provide minimal feedback to the user that contains 
important attributes, we developed a simple algorithm 
based once again on the utterance history.  Each attribute 
has a weight as to its importance in spoken feedback. The 
widget specification provides initial weights to seed the 
algorithm.  Only those items with an importance value 
greater than a set threshold (we used 0.5) are spoken back 
to the user.   (It should be noted that this feedback 
importance value is not the same as the weight assigned 
to each utterance.) Each time the user includes an 
attribute in an utterance, that attribute is given an 
importance value of 1.0.  This is the case not only with 
critique commands but also commands that request 
attribute values.  Each utterance thereafter that doesn’t 
include that attribute causes the importance of that 
attribute to decay by 10%.  Attributes are spoken back in 
their order of importance.  This way the user always 
hears first what he has most recently spoken about. 
 
To illustrate how this works, consider the following user 
session with an importance threshold of 0.8 (0.8 is high, 
but serves well to limit the example): 
 
 C7: “Car make is Honda, year is 1999, price is 

$11,000”   
 

Make Model Year Price Mileage 
1.0 0.0 1.0 1.0 0.0 

 
Make, year, and price are labeled in the data as default 
important attributes and are given importance values of 
1.0. 
 
 U8: “What is mileage?” 
 C8:  “mileage is 52,000” 
 

Make Model Year Price Mileage 
0.9 0.0 0.9 0.9 1.0 

 
Mileage importance is set to 1.0, while all the other 
attributes decay by 10%.  Mileage will be spoken first the 
next time the computer give feedback. 
 

U9: “Next” 
C9:  “Car mileage is 53,361, make is 

Volkswagen, year is 1997, price 
is $15,750” 

U10: “What is model?” 
C10:  “Model is Jetta GLS”   

 
Make Model Year Price Mileage 
0.81 1.0 0.81 0.81 0.9 

 
Model importance is set to 1.0, while all the other 
attributes decay by 10%. 
 

U11: “Like model” 
C11:  “Car model is Jetta GLS, mileage is 

53,361” 
 

Make Model Year Price Mileage 
0.729 1.0 0.729 0.729 0.81 

 
The last feedback from the system only included model 
and mileage since their importance values are greater 
than the threshold we initially set of 0.8. 

EVALUATION 
We have performed a rough usability evaluation on our 
current list widget implementation. The specific 
questions that we wanted to answer with this evaluation 
was whether beginning users could learn the technique 
rapidly and use it effectively on lists of data that are 
normally unreasonable using speech. This was not a 
controlled experiment to compare competing approaches. 
 
Using the WWW we extracted two example lists. The 
first is a list of 100 automobiles for sale. Each 
automobile has 11 attributes, including the make of the 
auto, price, number of miles, color, etc. Our second list is 
122 student apartments offered for rent each with 13 
attributes, including the rent, deposit required, distance 
from campus, number of bedrooms, etc.  
 
For our usability test we invited in two groups of 5. The 
testers were university students from non-technical 
majors that had no prior experience with spoken 
language interfaces. We wanted to know how rapidly 
someone with limited instruction could accomplish 
information tasks using our spoken list widget.  
 
We used the IBM ViaVoice recognition engine. Each 
user went through the speaker-dependent recognizer 
training before these tests to reduce recognizer failures as 
much as possible. Our work is focused on dialog design, 
not recognizer performance.  
 
Our primary measure was the amount of time that it took 
to complete each task. As a benchmark we used the total 
time required to speak the entire list. It takes an average 
of 3 seconds to speak each attribute. The total speaking 
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time would be about 80 minutes for the entire apartment 
list and 55 minutes for the cars. Even if listening to the 
whole list were an effective technique, the time is 
prohibitive.  
 
 
Group I was given the following series of tasks 

3 tasks from the apartment list with only the value-
specific commands (less, greater, equals) 

3 tasks from the car list with only example-relative 
commands (like, don’t like) 

2 open-ended tasks with the apartment list using any 
commands they want 

2 open-ended tasks with the car list using any 
commands 

Group II was given the same tasks with the order of the 
lists reversed. 
 
This test was designed to provide as much usability 
information as possible rather than for making controlled 
comparisons. Before each test, the users were given a 
one-page brief list of all of the available commands for 
the list widget. 
 
Completion rates 
Each tester performed 10 tasks for a total of 100 tasks. 
Out of those 100 tasks, 9 tasks were not completed 
within 10 minutes. Group I’s use of example-relative 
commands on the car list accounted for 5 of the 9 
failures. These 5 failures are all traceable to problems 
with nominal attributes such as model or color that do not 
have a distance metric. If a user is looking for a black 
vehicle, their only option was to say “don’t like color” 
for every color until black is finally spoken.  It is quite 
clear that for nominal attributes, the users must be able to 
specifically request a value.  
 
Out of the 10 people tested, 6 of them completed all 10 
tasks in less than 5 minutes. Of the remaining 4 people 1 
failed to complete 3 of the tasks in less than 5 minutes 
and the remaining 3 people failed to complete 2 tasks. 
All testers learned both sets of commands within the first 
few tasks and were reasonably effective after that. Within 
the inherent timing constraints of speech, our spoken list 
widget performed quite well on large amounts of data 
with inexperienced users. 
 
  Apartments   Cars 

Task 
Ave 

seconds 
Possible 

hits   
Ave 

seconds 
Possible 

hits 
1 470 7%   241 1% 
2 205 2%   106 2% 
3 258 1%   61 3% 

Table 1: Value-specific task times 
 

Value-specific results 
Both groups started with only the value-specific 
commands. Each of the three tasks asked about three 
attributes of the objects being searched. The performance 
times are as shown in Table 1. 
 
Testers that used value-specific commands on the car list 
performed quite well and learned quickly. With the 
exception of one person on their first task, all users 
completed these tasks in less than 200 seconds (3.3 
minutes).  The “possible hits” data is the percentage of 
the list items that could satisfy the task criteria. 
Performance times are driven more by experience with 
the dialog than by the hit rate. 
 
Example-relative commands 
Both groups used the example-relative commands on 
their second set of tasks. As discussed earlier, group I’s 
use of like/don’t like commands on the nominal attributes 
of cars performed very poorly.  The high rate of timeouts 
makes the other data irrelevant. 
 
On the other hand group II performed quite well on the 
apartment data. These times are better than those for the 
value-specific commands.  
 
  Apartments   Cars 

Task
Ave 

seconds
Possible 

hits   
Ave 

seconds 
Possible 

hits 
1 208 7%   473 1% 
2 159 2%   346 2% 
3 200 1%   315 3% 

Table 2: Example-relative task times 
 
The data does not provide any clear evidence whether the 
value-specific or example-relative commands performed 
better.  
 
Open-ended questions 
Our last sets of tasks were open-ended. We wanted to see 
how users would perform based on their own desires and 
interests. We chose apartments and cars because students 
have an inherent interest in these items and their own 
personal biases on these subjects.  
 
For the car list we posed two tasks. The first was to test 
the user’s own desires. Each user was given a sheet with 
a list of the attributes of a car. They were asked to fill out 
the sheet with their desired car. The testers were then 
asked to use the car list to locate a car they would like to 
buy. They were then given an artificial scenario and 
asked to find a car that fit that scenario. A similar 
strategy was used with the apartment list.  
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  Apartments cars 
self -data 175 363 

artificial 140 161 
Table 3: Open-ended tasks – completion time 
 
Testers completed their tasks in a timely manner. From 
the video tapes we did find that half of the testers 
changed their minds about what they wanted after 
working with the data. We are not sure if this is a 
realistic shift or tester fatigue. It was clear that the 
utterance history decay algorithm readily handled shifts 
of focus. 
 
Command usage 
A review of the videotapes showed the following 
distribution of command utterances by users. 
 
Critiques 60% 
Value Queries 30% 
List Navigation 6% 
Undo  4% 
Table 4: Command usage 
 
Most of the user interaction involved actual critique 
statements about what the user wanted. The second most 
popular were value queries for information about 
attributes not spoken in the initial presentation of a list 
item. The ability to scroll through the top choices in the 
ranked list was rarely used. After our preliminary tests, 
we added an Undo command to allow users to recover 
from recognition errors. This command was infrequently 
used. Recognition errors were not a large problem, and in 
many cases continued use of the critique commands 
overcame the problem naturally. 

SUMMARY 
We have described a spoken dialog system for accessing 
long lists of attributed objects. The system works by 
allowing users to comment on objects and their attribute 
values rather than formulating a query. The fuzzy nature 
of the query model facilitates location of objects when 
the user has imprecise goals. The use of a time-decay on 
utterances allows users to shift their focus without 
explicitly instructing the system.  
 
The spoken language list widget has demonstrated its 
ability to access long lists of attributed data items. Users 
learned the technique rapidly. The example-relative 
commands are ineffective when used with attributes that 
have no distance metric to compare values.  
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