
SOFTWARE – PRACTICE AND EXPERIENCE
Softw. Pract. Exper. (2011)
Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/spe.1085

Privacy-aware shared UI toolkit for nomadic environments

Richard B. Arthur∗,† and Dan R. Olsen Jr

Brigham Young University, Provo, UT 84602-6576, U.S.A.

SUMMARY

As computing becomes more nomadic, privacy becomes a greater concern. People use portable devices to
annex displays in their environments so that they can share information with other people. However, private
information such as usernames, e-mail addresses, and folder names are shown on foreign displays. In
addition, foreign keyboards can be used to enter in passwords generating a significant privacy and security
risk. Because nomadic users’ sensitive data is constantly at risk for exploitation via the UI toolkit, a
solution for protecting user privacy must include that toolkit. This paper introduces the XICE framework—
a windowing toolkit that provides easy display annexing and includes a robust privacy framework to help
protect users and their data. This paper discusses the exploits that annexing external devices introduces
and how XICE mitigates or eliminates those threats safely and naturally for both users and developers.
Copyright q 2011 John Wiley & Sons, Ltd.

Received 29 October 2010; Revised 9 March 2011; Accepted 17 March 2011

KEY WORDS: SPICE; privacy-aware; toolkit

1. INTRODUCTION

Computing is increasingly nomadic. Nomadic computing allows people to collaborate with each
other in a wide variety of places and situations. A key feature for a nomadic user is the ability to
have his own data, settings, and applications available wherever he is located.

A user could carry his data, settings, and applications via a personal device (e.g. laptop) so that
he can interact with his data anywhere. However, portable devices tend to have constraints on size
and weight and consequently on processing power and interactive richness. If the user can use his
personal device to annex resources (e.g. projectors or desktop monitors) in his environment then
he can overcome many of the limits of his personal device.

Normally annexation is performed via a VGA or DVI cable. Digital connections via wireless
networks are more versatile, because the annexed devices may additionally supply input hardware
and support multiple users. This paper contends that such network devices will replace VGA or
DVI. The network-enabled, annexable computers are called shared devices and typically provide
a screen but may also supply input devices such as keyboards and mice. Some of the common
devices users might share are illustrated in Figure 1. Notice that some shared devices are public
and not trusted while some shared devices are private and trusted. User Interface (UI) software
must be able to tell the difference and present itself accordingly.

Key to annexing shared devices is distributing the UI from an application executing on the
user’s personal device to a shared device. There are several existing technologies that may be used
to distribute a UI, such as X-Windows (X11) [1], Remote Desktop Protocol (RDP) [2], or Virtual
Network Computing (VNC) [3]. These protocols transmit the output from the executing computer

∗Correspondence to: Richard B. Arthur, Brigham Young University, Provo, UT 84602-6576, U.S.A.
†E-mail: startether@startether.com

Copyright q 2011 John Wiley & Sons, Ltd.

R. B. ARTHUR AND D. R. OLSEN JR

Figure 1. Shared devices that a nomadic user could annex. These devices
are located in either public or private environments.

to the shared device (sometimes called a display server) and transmit input from the shared device
back to the executing computer.

This network UI architecture introduces several privacy-related challenges. If a user annexes
a shared device, that device has several potential attack vectors: stolen output, stolen input, false
output, and false input. The shared device may have crimeware [4] installed, which could steal
the output from the user’s applications including any sensitive data shown in those applications
(e.g. e-mail addresses or login names). If the user enters his username and password through the
annexed input hardware, the shared device may steal those credentials. In addition, the shared
device may falsify output or input in an attempt to compromise the user’s device or expose his
sensitive information.

Fortunately, because the user has a portable trusted personal device, there are some new privacy-
related opportunities. The personal device may be used to view and input sensitive data (any data
that should not be viewed by arbitrary users), whereas the shared device may be used to display
open data (data that can be viewed by anyone). Most current privacy-aware software operates
exclusively on one screen which it must treat as a public screen (viewable by anyone) or private
screen (viewable by trusted parties). Allowing software to simultaneously operate on a public and
a private screen opens many new issues for privacy-aware UI tools.

In addition, the input from a shared device may be trusted or distrusted. Trusted input is input
that the user (or someone the user trusts) has control over to prevent malware from stealing input
or providing false input. Distrusted input is input from some foreign device which the user does
not control. The term ‘distrusted input’ may synonymously be considered ‘untrusted input.’ This
paper uses the term ‘distrusted input’ throughout.

Each device a user interacts with has a different privacy state—a combination of whether the
display is public or private and whether the input is trusted or distrusted. With nomadic interaction,
the portable device is assumed to be private and trusted. The user’s desktop machine at work
or home would be a shared device that is private and trusted. However, annexing a coworker’s
desktop display may be public and trusted; the user does not want IMs to appear on the coworker’s
display. In a conference room at the user’s work the display is public, so sensitive data should
not be shown, but any other open data should be shown. Because the shared device is controlled
by the user’s work, its input is trusted so the user can confidently access or expose sensitive data

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
DOI: 10.1002/spe

PRIVACY-AWARE SHARED UI TOOLKIT FOR NOMADIC ENVIRONMENTS

as necessary. When presenting at another institution, however, the shared device is public and
distrusted; hence, sensitive data should not be shown or altered. Shared devices in other locations
such as restaurants or mall kiosks would also be public and distrusted.

Even though input may be distrusted, the user is not precluded from accepting input from the
annexed device. For instance, a user may choose to annex a foreign display so that he can type
up an e-mail consisting of open data because typing via a physical keyboard is faster than via his
mobile device’s soft keyboard. If a user chooses to accept input from a distrusted device then his
software must actively protect him from potentially malicious activity. For example, the software
must be aware of any input that may attempt to alter or expose sensitive data. Continuing with
the e-mail example, the user should pick the recipients via his mobile device, and the e-mail
addresses should be blocked on the public display (although the contact name may be shown).
A malicious display server could attempt to expose the user’s contact list on the public display so
that it could steal the available e-mail addresses. The contact list exposure instruction should be
confirmed in a non-exploitable way—for example via a dialog on the personal device—so that the
e-mail application knows that the user initiated the contact list exposure. A worse violation would
be if a malicious display could generate and send spam e-mails via the user’s e-mail application.
Consequently, the ‘send e-mail’ command should similarly be confirmed.

To enable privacy-aware development, application developers must be able to write software
which changes its output and can filter any input based on the shared device’s privacy state. X11 and
RDP inform software when the UI is rendered on a shared device, while VNC does not. However,
none of these protocols attaches a privacy state to the network connection; all shared devices are
treated as private and trusted. RDP allows for excluding the shared device’s input, but accepting
and distrusting input is not possible. A shared UI protocol must be able to identify the privacy
state of a shared device so that shared applications may alter their output and filter the input.

When using existing UI distribution technologies, developers have two major problems: tracking
privacy state and augmenting an application’s UI. Developers must independently add code to
identify and track the privacy state of the shared device. Additionally, developers must make
many privacy-related decisions with regard to application output. Without rigorous software devel-
opment standards, these decisions may not be implemented consistently, leading to inadvertent
privacy leaks.

An application-specific privacy state creates an inconsistent interface for users. If a user has more
than one privacy-aware application executing on his personal device, then having different privacy
management tools in each application can lead to more privacy leaks (e.g. the user changes the
privacy state of one application but neglects to change the privacy state for the other applications).

This paper introduces the XICE Windowing Toolkit (eXtending Interactive Computing Every-
where pronounced ‘zice’) [5]. XICE has been built to allow any network-connected device to
annex (via Wi-Fi, Bluetooth, etc.) interactive resources (e.g. screens, keyboards or mice) on other
network-connected devices. XICE includes a straightforward, robust privacy framework that allows
a user to specify whether a display/environment is public or private and whether he trusts its input
hardware. The privacy framework also allows developers to write code that takes advantage of
the user’s privacy specifications. Providing a user-friendly solution for securing sensitive data in
nomadic environments requires an interactive, understandable model and a UI toolkit that simplifies
privacy-aware UI development.

This paper deals exclusively with the privacy issues inherent in a shared UI windowing toolkit,
and not the broader privacy problem of cryptography, secure protocols, or online website privacy
settings (e.g. facebook [6] or MySpace [7]). This paper and the XICE toolkit do not address these
issues. This paper introduces a toolkit which helps protect the user and software from potential
exploits inherent in sharing a window to a foreign display server.

Although the connection to a display server could be encrypted (e.g. using public/private key-
pair encryption), XICE does not enforce this. Instead XICE assumes that any data transmitted
out of the personal device is stolen, regardless of whether the display server or environment is
trustworthy. For this reason, only UI output is sent to the display server and never any data files,
and XICE’s privacy framework is intended only to affect application output.

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
DOI: 10.1002/spe

R. B. ARTHUR AND D. R. OLSEN JR

2. PRIVACY THREAT ANALYSIS

As people work nomadically, they interact with foreign devices. To protect sensitive data, the safest
choice is to never annex devices belonging to others. However, users are then limited to resources
on their personal devices. People should be able to use external devices, even suspect ones, in
ways that protect their data. Malicious machines can take advantage of users in four ways: stolen
output, stolen input, false input, and false output. These exploits, plus the potential for public
embarrassment, comprise the five key problems inherent in nomadic computing.

2.1. Stolen output

Any information shown on a shared device can be stolen by that device. At worst, a malicious
device could steal data like user credentials. For example, if an e-mail application has trouble
authenticating with its e-mail server, the application may show a dialog similar to the one in
Figure 2. This dialog shows the user’s e-mail address, e-mail server, and password length. The
shared device now has enough information to perform a brute-force attack on the user’s e-mail
account. An annoying, but less injurious consequence might be that the shared device could scrape
the e-mail address and spam it.

To protect against stolen output, sensitive data should not be shown on a public screen. At
minimum, if a window that typically contains sensitive data is shown on a public screen, the
sensitive data it contains should not be transmitted to the shared device. It is better if that sensitive
data is redirected to a private device.

To facilitate protecting sensitive data, the UI toolkit will need to identify public screens and
provide that identification to applications. Each screen must be tagged either public or private.
Applications can then use that state to prevent sensitive data from showing on public screens.

Identifying a public screen must be within the user’s control. The shared device cannot specify
the privacy state because the shared device could easily provide a false privacy state. Instead, the
private state must be specified through the personal device, preferably by the user.

2.2. Stolen input

If a shared device is used to provide input, the device can steal that input. For instance, many
people use internet cafes or hotel computers to check e-mail. These machines could easily harbor
key loggers that steal usernames and passwords.

If an application is unaware that the input is distrusted, the application will request input through
the shared device, regardless of whether sensitive data is included. For instance, if a web browser
encounters a page that has login boxes, those boxes will show on the shared display. Then, users
will likely enter their credentials directly via the shared device’s input hardware, compromising
sensitive data. Applications must be aware of public displays and any widgets that request sensitive

Figure 2. An inappropriate dialog for a public display—it shows private information. The display now
has the user’s e-mail server, e-mail address, and password length.

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
DOI: 10.1002/spe

PRIVACY-AWARE SHARED UI TOOLKIT FOR NOMADIC ENVIRONMENTS

Figure 3. Options such as ‘Show Private Data’ can be exploited by a display that falsifies input.

data (e.g. password boxes). Requests on public devices for sensitive data may then be denied. The
sensitive data request and input binding can be moved to the secure personal device. The user
must be notified via the public device that sensitive data is requested on the personal device. Users
need software to intuitively guide them with privacy and security [8].

2.3. False input

A shared device can control any application without the user’s consent. For example, if a shared
device has malicious software that is familiar with a user’s application, the shared device could
expose sensitive data by sending input to the application’s window causing changes to the user’s
privacy settings. The ‘Show Private Data’ menu option in Figure 3 causes an application to expose
all of the sensitive data within the window. To exploit this menu option, the shared device could
send a mouse click event to expose the menu, and then another click to ‘Show Private Data’.

One way to prevent the shared device from supplying malicious input is to categorically deny
the device’s input. However, input from a shared device could be much richer than input on a
personal device. For example, a physical QWERTY keyboard on a shared display is much easier
to work with than the soft keyboard on a personal device. The user must be able to use the input
on the shared device if he chooses.

Another way to prevent false input is to remove all widgets that affect sensitive data from a
window. However, such prevention limits what the user can do. For instance, a user may trust the
environment for some of his sensitive data. When the ‘Show Private Data’ option (Figure 3) is
attached to the window it affects, the user knows which window he is exposing when he selects
that option, because he is exposing the window the menu option is attached to. If that option is
not shown on the public display then there must be an abstraction on the personal device that he
can use to expose that window. The user may then inadvertently use the wrong widget and expose
the wrong window.

A better way to prevent false input is to securely confirm sensitive input. For example, if the
user clicks on the ‘Show Private Data’ option, a dialog could be shown on the personal device to
confirm that selection. Through the trusted input on the personal device, the confirmation dialog
ensures that the user wants to expose a particular window’s sensitive data. If the display supplied
malicious input to try and expose that window, the user would be alerted to that request by the
unexpected appearance of that confirmation dialog on the personal device. By confirming actions
that affect sensitive data, the display is discouraged from supplying false input.

2.4. False output

Shared devices can overtly change a window’s output in an effort to conceal malicious activity
or to coax users into exposing sensitive data. As an example of concealing malicious activity, if
no confirmation dialog is provided in response to false input, the malicious display could click
the ‘Show Private Data’ option, and then immediately send mouse clicks to undo that option. The
device may only present the last concealed version of the window so that the user is unaware that
his privacy has been compromised.

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
DOI: 10.1002/spe

R. B. ARTHUR AND D. R. OLSEN JR

Figure 4. A shared device could swap the ‘Copy Sheet’ and ‘Show Private Data’
options. The image on the left is what the personal device transmits to the shared

device. The image on the right is what the shared device shows.

Figure 5. An embarrassing Instant Message shown during a collaborative session.

Providing convincing false output to coax the user into exposing sensitive data is difficult, but a
malicious display may resort to such behavior when the user does not allow input from the shared
device. For example, when the user provides all input from his personal device, the display only
knows when the mouse moves or when the UI changes. If the malicious device accurately predicts
a user’s click on the ‘Copy Sheet’ option in Figure 3, the shared device could swap the graphical
output of that option with the ‘Show Private Data’ option. The user sees an altered view (on
the right of Figure 4). The personal device will interpret the user’s click as ‘Show Private Data,’
because the personal device has a model of the graphical output sent to the shared device (on the
left of Figure 4). The personal device automatically trusts this input from itself; consequently, the
shared device tricks the user into inadvertently exposing sensitive data.

False output cannot be prevented, but it can be detected. If a user performs an action that affects
sensitive data, that action should be confirmed on the personal device. Confirmation prevents
exposure of sensitive data to a public device and enables the user to discover the malicious display.
Since the user does not expect a confirmation dialog, its appearance alerts him to the display’s
malicious activity.

2.5. Embarrassment

In collaborative situations, users bring data to share with other people using shared displays. Even
if sensitive data—as identified to applications—are protected, embarrassing data—relating to the
social appearance of the user—may be exposed. Disclosure of either data type is unacceptable.
Consequently, for the remainder of the paper both are considered sensitive.

One situation in which a user’s embarassing data may be exposed is when he receives an instant
message on a shared display. Such messages are typically benign, but a message like the one in
Figure 5 might be embarrassing. If the icon in that message were offensive, the social situation
could be disastrous.

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
DOI: 10.1002/spe

PRIVACY-AWARE SHARED UI TOOLKIT FOR NOMADIC ENVIRONMENTS

Figure 6. A file dialog with sensitive folder names.

In addition, many e-mail applications show notifications of an e-mail’s arrival. The process
through which these notifications appear is similar to instant messages.

Instant messaging clients are somewhat intelligent with regard to new messages; the latest
versions of these clients will not show notifications when the user’s active window is full-screen.
Not showing notifications is useful when he plays a full-screen game or gives a presentation. But,
if he demonstrates software in a typical window, the shared display is treated as private and the
notifications appear. Another indication of the flaw of using window state to determine privacy
state is when the user views a full-screen application on a private display (such as at his desktop),
the notifications do not appear. The software misinterprets the full-screen application as a public
situation, whereas the user is in a private situation where he wants to receive notifications. However,
if applications are aware of the user-specified privacy state, the applications can intelligently choose
when and where to show notifications.

When a user opens files, he sees dialogs like the one in Figure 6. If he makes a presentation to
IBM, he might not want IBM employees to notice presentations for Intel, Apple, and Microsoft.

To prevent embarrassment, potentially sensitive data should not be shown on public devices.
Privacy-aware applications can make appropriate privacy decisions when using public screens
instead of assuming like instant message applications do. When annexing a public screen, appli-
cations should show potentially sensitive data on the personal device. When annexing a private
screen such as one’s own desktop, applications should show sensitive data on that private screen.

3. SOLUTION REQUIREMENTS

The authors envision new environments and styles of interaction that will emerge as users become
more nomadic and computers change to facilitate such users. The core challenge for nomadic
computing is to carry a portable computer but annex share devices and safely gain significant
resources. An extreme, but potentially common, situation is a user carrying a handheld device to
execute his software, but interacting with that software on a much larger screen (e.g. wall-sized).
The annexed resources must provide more screen space or input than the user is carrying; otherwise,
the user is unlikely to annex those resources because they do not offer any additional power.

The user should have consistent personal settings on any annexed machine. This consistency
means that his personal settings and applications should be available wherever he is. The user
must be able to carry his data, settings, and applications with him so that these pieces are uniform
everywhere.

Furnishing data, settings, and applications to an annexed machine exposes the user to the five
key problems. The data, settings, and applications should be available without being exposed,
which requires trusted processing wherever the user is located. A personal device should process
the user’s data, settings, and applications.

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
DOI: 10.1002/spe

R. B. ARTHUR AND D. R. OLSEN JR

When annexing foreign devices, users may frequently interact with sensitive data. Rather than
exposing sensitive data on public screens, users need privacy-aware software to help protect their
sensitive data. Users could restrict themselves to web-based applications and use kiosks for all
computing needs. However, those who interact exclusively with kiosks are exposed to the five key
problems. For example, a user must supply his username and password to the kiosk each time he
visits a personalized website. Not only can the kiosk steal those credentials, it can swipe sensitive
data (e.g. e-mail addresses) on those personalized sites. A user needs a trusted device through
which he can safely view and enter sensitive information, regardless of whether the environment
is private or trustworthy.

A privacy-aware application is more capable of protecting the user’s sensitive data when it is
informed about the privacy state for a shared device. The application must be able to show non-
sensitive data on a public screen and simultaneously show sensitive data on the personal device’s
screen. Splitting the UI between the annexed device and the personal device has the potential to
considerably enhance the user experience and greatly reduce the attack surface a shared device may
exploit, because malicious shared devices can only steal sensitive data from application outputs
rather than from data within the user’s files. Applications with sensitive data that are aware of
public screens can better protect the user’s sensitive data.

The privacy behavior should be consistent and universal through all applications on the user’s
device. An inconsistent experience creates more privacy failures and user frustration. The Mac [9]
has shown that to gain consistency across applications the toolkit must provide the consistency
rather than relying on end developers. Thus, to gain consistent privacy-aware software, the privacy-
aware decisions must be moved to the windowing toolkit as much as reasonably possible.

The nature of the nomadic computing environment necessitates windowing toolkits and appli-
cations that are privacy-aware. This must be dealt with before deploying a Dynamo- [10] or
Personal-Server-like [11] environment. With a privacy-aware shared UI toolkit and applications,
the user’s software becomes aware of the privacy state he applies to his current environment and
the software can augment itself accordingly.

3.1. Coding privacy

The granularity at which to integrate shared UI privacy into an application is an application-specific
decision. Different applications and users will have varying needs for protection. For example, a
word processor may treat entire documents as sensitive or open, while a spreadsheet may treat
individual cells as sensitive or open.

The best granularity for privacy is unknown. There is a continual tradeoff between privacy
violation and over-protection. Reducing barriers makes software easier to use and more transparent,
but also increases the opportunity for violations and surprised and angry users. Creating more
barriers increases the protection for users, but frequently makes users frustrated as they must
navigate these barriers and make decisions. Developers need the freedom to experiment with their
software designs so they can create the best software for their users. As will be shown in this
section, the question of when to prevent sensitive data from appearing on an annexed screen is
broad and has numerous potential solutions.

Currently, there is little to no windowing-toolkit-wide shared UI privacy protection available, so
applications must make these decisions independently. However, with a good toolkit which provides
system-wide privacy information, developers have greater freedom to explore the privacy-aware
shared UI software space.

What follows are five examples of privacy granulation issues. This section discusses each
option and proposes several theoretical approaches. None of these approaches has been tested,
and each approach has varying levels of difficulty for both users and developers. The purpose of
this (Section 3.1) is to show why it is necessary to have a windowing toolkit which makes these
options possible.

3.1.1. Word processor. A word processor could have privacy integrated at different levels within
the application, from fine-grained to coarse-grained. A word processor could be designed to protect

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
DOI: 10.1002/spe

PRIVACY-AWARE SHARED UI TOOLKIT FOR NOMADIC ENVIRONMENTS

individual characters, words, sentences, paragraphs, pages, or even the entire document. Embedded
images may require protection as well, which could be at the image level (block the whole image)
or pixel level (block out someone’s face using a rectangular or irregular region).

Somehow the sensitive data must be specified. With finer-grained protection, the software may
require the user to specify each piece of sensitive data. For example, the user must highlight text
and mark it ‘sensitive.’ On the other hand, developers may produce software that automatically
detects and protects potentially sensitive information. For example, it may discover and protect
e-mail addresses, phone numbers, social security numbers (SSN), and financial information. The
sensitive data would not appear on a public screen unless specified by the user.

On the other hand, maybe it is easier for the user to specify which data is open rather than
which data is sensitive. A developer may create a word processor that protects all data by default,
unless the user specifies otherwise. However, the user specifies the open data, the sensitive data
must be protected from appearing on public displays.

When the software protects characters, words, or images, it must provide feedback to the user
that such information is protected. The software may highlight that information in some way while
the user is working in a private environment.

When the user moves to a public environment, the sensitive data must be protected while
potentially giving feedback about its existence. The word processing application may hide all
sensitive data and not show that it even exists. Or the software may show gray rectangles where the
sensitive data is located. ‘Greeking’ sensitive text may be preferred, in which case ‘lorem ipsum’
text may be inserted. A more radical case may be to collapse the sensitive data and show a note
down the side of the page pointing at it.

3.1.2. Application-independent privacy awareness. There are many widgets that have privacy
issues independently of the content. For example, showing the file dialog in Figure 6 on a public
display is unacceptable. Content-assist menus that show recently used words may need to be
blocked. Menus within the application that show the names of recently accessed documents may
need protection. Launching an e-mail application to send a document may be more appropriate
on a private display. Clearly some dialogs, menus, menu items, or even applications need to be
protected.

Properly protecting the user’s privacy requires that the user, developer, or software detect privacy
boundaries—clear differentiation between open data and sensitive data. For example, specific data
within a document may be considered sensitive, hence, the boundary between the surrounding
open data and the sensitive data must be respected. Another clear privacy boundary is shown in
the following example. Two people are discussing a document on a shared display space. When
the user who owns the document opens the file dialog to choose another document to view, that
user has crossed a privacy boundary. He thinks about the file system differently from his word
processor, and the ways of protecting the file system are different from protecting data in the word
processor. Detecting such boundaries in the UI design process and then protecting them in the
implementation is important.

3.1.3. Spreadsheet. A spreadsheet has many of the same privacy-related design decisions as the
word processor. Protection could be performed on the level of characters within cells, cells them-
selves, rows and columns, or even the entire document. For the user, marking individual rows
or columns may be less tedious than marking individual characters, but the user may find any
marking tedious. Developers may add code which automatically protects data based on the format.
For example, it could protect all financial information, e-mail addresses, and phone numbers from
appearing.

Some shared UI privacy-related decisions are different than a word processor. For example, a
user may not want to share individual employee salaries, but may be willing to share aggregate
personnel costs. A developer may write an algorithm that treats financial information as sensitive,
except in cases where an aggregation (e.g. sum or average) is used on some minimum number
of items (e.g. 5 or more). Graphs may also be treated as sensitive if they express data from cells

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
DOI: 10.1002/spe

R. B. ARTHUR AND D. R. OLSEN JR

marked sensitive, unless the data is sufficiently abstracted from the original values. Clearly these
decisions are not the same as the decisions for a word processor application.

Whether each of these spreadsheet-application-specific ideas is good or bad or even appropriate is
unknown. But a good toolkit will allow developers and users to explore these decisions themselves.

Other similar issues are how to indicate at a private display that sensitive data will be protected
if shown when connected to a public display and protecting some dialogs, menus, menu items,
and applications.

3.1.4. E-mail manager. An e-mail application is likely to contain sensitive data especially because
the data is generated by other users. Expecting other users to properly tag data as sensitive may
be foolhardy. But requiring a receiving user to individually tag information within each e-mail
message will likely frustrate him. More proactive protection tools must be necessary. For example,
the e-mail application may actively prevent the e-mail list and individual e-mails from showing
on public displays.

E-mail is frequently shared with other users. For example, in a collaborative situation users
might show e-mail messages to each other. The e-mail application itself will appear on the personal
device, and the user can elect to share individual e-mails.

When an e-mail is shown on a shared device, e-mail addresses in the ‘To’ and ‘From’ fields
represent another privacy boundary and should not be sent to the shared device, otherwise the
addresses could be stolen. Two new situations arise when sensitive data is blocked from appearing
on a public device. First, the user may want to privately access those e-mail addresses; this scenario
is called the reviewing situation, because the user may need to review sensitive data without
exposing it on public screens. Second, the user may want to explicitly show those e-mail addresses
anyway because he trusts the audience; this scenario is the field override situation.

3.1.5. Web browser. A web browser offers some interesting privacy-related challenges. One such
case is when a user visits his bank’s website. He does not want his sensitive data to show on a
public display. Or consider a user who visits a news site which requires a user id and password to
view articles. The pages within the site may be considered open while the login page should be
sensitive.

Web standards may change so that sites can specify pages or content that is sensitive, but until
that point browsers have several approaches for privacy-aware shared UI designs. These approaches
include protecting data at the window level, the page level, widget level, or at the content level.

The browser may protect a specific window the user has created, regardless of the tabs shown
within that window. Consequently, when the user shares that window on a public screen the content
shown in each of that window’s tabs are also shared. If the user chooses to share a window
containing a sensitive page, the URL for that page may be blocked from appearing in the address
bar so that others in the room have a more difficult time finding and accessing that site.

Alternatively, the browser may protect individual pages from showing, requiring the user to
explicitly authorize each page for public screens. Or the browser may be designed so that the
user must explicitly authorize specific domains, sub-domains (e.g. for blogs, or sub-sites that may
contain sensitive information), and possibly URL folders. As the user navigates away from an
authorized domain/sub-domain/folder, the user must re-authorize. If the user logs in to a site, the
rest of that site may be considered sensitive unless specified otherwise. A site that is accessed
through HTTP may be considered open while a site that is accessed through HTTPS is considered
sensitive. Or developers may come up with a more manageable page-level privacy boundary.

Content within the page may need to be protected. For example, login boxes on a web page
should probably not be available on a public display, but still available to the user (a variant of
the reviewing situation). After logging in, easily-identified sensitive data (e.g. e-mail addresses)
within a page may be discovered and protected by the browser, even though the rest of the page
is considered open.

Assistance from the browser may also contain sensitive information. A privacy-aware browser
may be designed to hide content-assist drop-downs, recent history, or bookmarks, while still

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
DOI: 10.1002/spe

PRIVACY-AWARE SHARED UI TOOLKIT FOR NOMADIC ENVIRONMENTS

showing most menus. Or, if the user marks certain pages or sites as sensitive, those specific
pages may be blocked from appearing in content-assist drop-downs, the history, and bookmarks.
There are clearly a wide variety of shared UI privacy issues that affect browsing and the features
expressed by the browser.

3.1.6. Instant messenger. As discussed in Section 2.5, instant messaging software can present
several problems. It is unlikely that users will tag individual messages or content within the
messages as sensitive. So the software must treat all such messages as potentially sensitive. When
the user is at a private screen all his messages should appear, but when in a public environment
his messages should not appear publicly.

Similarly, the contact list should not be shown on a public display unless the user explicitly
chooses to share that list. On the other hand, the user may choose to share a specific conversation
thread to a public screen.

3.2. XICE privacy-aware strategy

Specifying where privacy boundaries should be placed is a difficult problem. Clearly the shared UI
privacy issues in a word processor are not the same as the issues in a spreadsheet, e-mail manager,
web browser, or instant messenger. Each of these tools should have consistent mechanisms for
allowing users to share a window, protect sensitive data, review sensitive data, and show sensitive
data anyway. Therefore, the XICE toolkit is designed to incorporate many privacy-aware shared
UI decisions for both users and developers.

The XICE toolkit provides important facets for privacy-aware software design. One facet is that
the toolkit provides information to applications about how the user feels about an annexed display
space (the privacy state). Another is that the toolkit provides a set of tools available to developers
from public/private windows to fine-grained widgets that can help the developer protect the user’s
sensitive data on public screens and from distrusted input.

Critical to implementing effective privacy-aware applications is lowering the overhead required
for developers to implement privacy awareness. If developers make fewer decisions when imple-
menting privacy awareness, but can more consistently achieve their desired results, then users
will also have a better experience. Currently, developers must start from scratch when building
privacy-aware applications, so moving many decisions into the toolkit is beneficial.

Considering that no such windowing toolkit exists (as will be shown in Section 4), the XICE
toolkit is compared against the current state of no options for developers (other than build-from-
scratch), no information for applications (no system-wide privacy state), and no control for users.
For example, when writing an e-mail application, the developer may want to declare new e-mails
as sensitive and show them only on a private display. Previously these decisions were difficult but
with the XICE framework they are straightforward.

In summary, the overall protection of nomadic user privacy has five parts that the toolkit and
applications must implement. First, the toolkit must be able to distribute the UI between the
personal device and the display, allowing the application to independently render to both displays,
and giving the user a consistent, richer experience. Second, the toolkit must allow the user to
identify an annexed display’s privacy state, and the toolkit must inform applications of that privacy
state. Third, applications must avoid showing sensitive data on public devices, while still showing
open data. Fourth, applications should either not allow sensitive input from distrusted devices or
confirm such input on the personal device. Finally, users must be able to resolve the reviewing
situation and field override situations by explicitly overriding privacy controls.

4. PRIOR WORK

The solution for protecting a nomadic user’s privacy must incorporate the five parts enumerated
in the preceding section. A wide variety of privacy-aware applications have been developed, each
with novel aspects in how they protect sensitive data, but few are implemented in the toolkit or

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
DOI: 10.1002/spe

R. B. ARTHUR AND D. R. OLSEN JR

incorporate UI distribution. A generalized solution that can be used simultaneously by a wide
variety of applications is preferred.

Examples of privacy-aware applications include PrivateBits [12] and Privacy Blinders [13].
PrivateBits has novel tools for blocking sensitive data contained in a web browser. For example,
PrivateBits filters the browsing history and auto-complete hints when the browser is in public mode.
Privacy Blinders renders moveable black rectangles over the top of sensitive information within
a web page. The source web server tagged that information as sensitive. But neither approach
incorporates UI distribution to shared devices, so input cannot be controlled, nor can they resolve
the reviewing or field override situations. If the user were to use X11 or RDP to annex shared
devices, Privacy Blinders fails to prevent sending sensitive data to the shared device. Because the
black rectangles are rendered after rendering the sensitive data, the user sees the information as
being blocked but the display server sees the rendering calls for the sensitive data.

Berry, Bartam, and Booth [14] have developed an approach that uses simple UI distribution.
Their tool integrates with Microsoft Word, Excel, and Internet Explorer and exposes a replicated,
public view via VGA. Users tag information as sensitive using the application-provided highlighter
tool, and then the public view blocks that sensitive data. In addition, file dialogs are prevented
from showing on the public display. However, the public view only annexes as much visual space
as the personal device has. Consequently, the shared device provides no additional screen space.
The applications are also not informed of the privacy state and cannot take action to protect the
user’s sensitive data.

Symbiotic Displays [15] is a wrist-watch application that can annex a display to show e-mails.
This approach effectively distributes the UI across two displays with different privacy states. It
also supplies an interesting resolution to the reviewing situation by allowing the user to select
sensitive words (which are blurred) on the shared display and view the words on the wrist-watch’s
screen. Unfortunately, although other people in the room cannot see any sensitive data, all of the
sensitive data is transmitted to the shared device. The shared device is the computer that makes a
decision as to how to block the sensitive data. Consequently, this approach is still vulnerable to
stolen and false output and input.

Oprea et al. have a solution for safely interacting with personal data on a shared device [16]. The
personal data is stored and processed on a remote computer, and the personal device establishes
a connection between the shared device and the remote computer, as illustrated in Figure 7. The
personal device is augmented with an optical mouse to supply all pointing input. Unfortunately,
this solution only protects against false input and some stolen input (users may still use the shared
device’s keyboard to enter credentials), but not stolen output or embarrassment. In addition, because
it relies on the Internet and VNC, displays without Internet access cannot be annexed and large
distances slow the interactive experience.

Sharp et al. provide a similar solution to Oprea, except that Sharp protects against stolen
output [17]. Oprea shows everything the remote computer renders while Sharp blurs all text before
transmitting the UI to the shared device, including all non-sensitive text. To view any of the

InternetDisplay Server

Personal Device

Remote PC
Located at

Home or Work
Perform input

Update screen

Establish
Connection

Figure 7. Oprea’s annexing solution. The personal device brokers a connection between a VNC display
server and a remote PC, and then supplies all pointing input.

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
DOI: 10.1002/spe

PRIVACY-AWARE SHARED UI TOOLKIT FOR NOMADIC ENVIRONMENTS

rendered text, the personal device shows a complete, scrollable, un-blurred view of what the remote
machine renders. However, most text within an application is not sensitive (open) and is useful if
shown on the shared device. In this case, applications are not privacy-aware so the toolkit cannot
intelligently block only sensitive data.

Mobile Composition [4] provides a web-based privacy solution that splits web pages across two
machines. The shared device shows all of the user’s open data, but areas of a page containing
sensitive data are tagged as sensitive by the website designers and are encrypted such that only
the personal device may decrypt them. In this way, Mobile Composition protects against the four
problems of stolen and false output and input. However, this solution does not support applications
outside of the web and relies on the web for all processing, which prevents the user from interacting
with software when Internet access is unavailable.

SessionMagnifier [18] takes a similar approach to Mobile Composition, except that Session-
Magnifier uses the PDA as a proxy web server for the shared display. Then SessionMagnifier can
filter information on a web page. However, this approach suffers from the same problem as Mobile
Composition—SessionMagnifier only operates with web applications.

5. A PRIVACY-AWARE UI TOOLKIT

Nomadic computing necessitates UI distribution from personal devices to shared devices. For the
goals outlined in this paper, a significant failing of most existing privacy-aware technologies is
that they do not distribute the UI from a personal device to a shared device.

XICE was developed using Java 1.6 to create a seamless nomadic computing environment.
XICE handles the details of annexing shared devices and distributing application UIs to them.
The graphical output of each application window is abstracted as a scene-graph (a tree-structure
display list) so that windows can be rendered on any shared device without regard to display size or
resolution. A scene-graph is sometimes called a presentation tree. Scene-graphs have been studied
for several decades in tools such as Graphics Kernel System [19] or Programmer’s Hierarchical
Interactive Graphics System [20]. Rather than using the traditional damage-repaint rendering model
an application builds a tree structure of drawing commands and hands that tree over to a rendering
framework which renders the tree independently of the application. Toolkits such as Silverlight
[21], Windows Presentation Foundation [22], and JavaFX [23] are popularizing scene-graphs as
integral components in GUI development for desktop applications. As measured in prior research,
the scene-graph also dramatically reduces the computational burden on the personal device relative
to RDP, VNC, and X11, making the protocol more suitable for small personal devices [5]. Via
XICE, users can annex shared devices in airports, restaurants, personal offices, living rooms,
etc., and push windows to them. In addition, XICE has the appropriate hooks to make privacy a
first-class citizen.

5.1. Windowing toolkit interaction

Users working nomadically take personal devices to shared devices and annex them. The personal
devices run XICE, and the shared devices have the hardware and software necessary to estab-
lish network connections and to process XICE rendering commands. Users can push application
windows to the shared devices.

The windowing toolkit must enable users to quickly push windows to an annexed display. In the
top-right of every window is a drop-down button which provides access to the toolkit options for
that window. This button takes on different appearances—some of which are shown in Figure 8—
depending on the state of the window. Windows on the personal device show the ‘Push’ option,
which, when clicked, starts the process of connecting to a shared device.

After annexing a shared device, all other windows on the personal device change to ‘Push:
Machine’. All shared windows say ‘Pull Back’ to provide a single click for removing that window
from the shared device. Applications continue to execute on the personal device; only the graphical
output is transmitted to the shared display.

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
DOI: 10.1002/spe

R. B. ARTHUR AND D. R. OLSEN JR

Figure 8. Common decorator widgets. The X closes the window, while (a) initiates a
connection to a shared device, (b) pushes a window to a currently connected shared device,

and (c) pulls back a window shown on a shared device.

Figure 9. The XICE connection dialog. A user has chosen to push a window to the machine he named
IceCream. By default, the configuration files are stored in the ‘Applications’ folder and the view shows

only the configuration files by filtering on the file extension.

After a user clicks the ‘Push’ button, the connection dialog in Figure 9 is shown listing several
configuration files. Each file contains the information necessary to connect to a shared device.
A user just picks a previously-used device and the current window is pushed to it.

If the user wants to connect to a new shared device, the user may click the ‘new’ button. Figure 10
shows the new connection wizard which walks the user through configuring the connection. Using
this wizard configures the following values:

• The shared device’s connection string (domain name or IP address)
• The connection name (e.g. Orca), created automatically or assigned by the user
• The shared device’s trust level (described in section 5.2)
• Where input comes from (defaults to the personal device)

The user only needs to enter the connection string and select the screen’s type. The connection
name is a unique identifier for the screen generated from the connection string but the user may
change it. The three most common types of screens are presented to the user, each with different
presets for the display server’s trust level and input sources. These presets will be discussed in
the next section. Configuration files store all these settings so that regularly used devices, such as
desktops or home televisions, do not need to be reconfigured.

The process of selecting a device or entering its connection information could be simplified by
using local area network broadcasting technologies such as Bonjour [24]. Currently XICE does not
use these technologies, but if it did, these technologies would list shared devices near the personal
device so that XICE could show only proximally available devices, highlighting those the user has
previously annexed. These broadcasting technologies could prevent clutter from the many devices
the user has annexed before.

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
DOI: 10.1002/spe

PRIVACY-AWARE SHARED UI TOOLKIT FOR NOMADIC ENVIRONMENTS

Figure 10. The XICE new/edit connection wizard. The user must supply
the connection string and select a trust level for the display.

5.2. Mitigating the privacy problems

When a user first connects to a screen he may choose one of the three types of screens presented
in Figure 10. This selection results in setting two separate options: the input source for windows
shown on that screen and the privacy state for the shared device. Input can either come from
the personal device or from the shared device. Input from the personal device is always trusted.
However, if the input source is the shared device then the trust level affects that input.

The shared display privacy state may have one of four trust levels. When a screen is public,
then windows shown on the shared device should only show the user’s open data. Private screens
should show the user’s open data and sensitive data. With respect to shared input, if the input is
trusted, then any input from the shared device is accepted and processed normally. But, when the
input is distrusted, software may take protective actions. For example, if the user clicks on the
‘Show Private Data’ option in Figure 3, then that click is confirmed on the personal device. Most
of the time, input is allowed without double-checking—like when typing up an e-mail via a public
display—but the input is double-checked when it affects sensitive data.

The four trust levels are delineated in Figure 11. The first trust level is public only, where the
display is public and input is distrusted. The public with input trust level is useful when the user
trusts the input but the environment is public. A user hosting a discussion in his company-owned
conference room can implicitly trust the display server’s input to not be malicious, but he may
not want sensitive data to appear on the shared display. The public with input trust level protects
his sensitive data without needing to confirm input that affects sensitive data. The third trust
level is display only. The display only option may be used in the situation where the user trusts
the audience but not the input. For example, if a lawyer is working with clients he believes are
providing malicious input he may treat the display as public and the input as distrusted. Finally,
full trust is assigned by the user when the display is private and the input is trusted, such as at his
desktop.

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
DOI: 10.1002/spe

R. B. ARTHUR AND D. R. OLSEN JR

D
is

pl
ay

 tupnI

 Distrusted Trusted

Public
Public Only

Show open data and
treat input as distrusted

Public with Input
Show open data and
treat all input as trusted

Private
Display Only

Show everything and
treat input as distrusted

Full Trust
Show everything and
treat all input as trusted

Figure 11. The four different trust levels. The user can trust or distrust input from public or private displays.

Room Type Trust Level Input Source

Public Public Only Personal Device

Home/Work Full Trust Display Server

Conference Room Public with Input Personal Device

Figure 12. Settings used for each of the options presented in Figure 10.

An important feature of XICE is the ability to redirect input—input from the personal device
may be used to interact with a UI shown on an annexed display. For example, a user may use
the input hardware on his personal device to control a mouse cursor on the annexed display. The
display is informed of the cursor movement but none of the mouse clicks. The clicks are dispatched
to the widget the cursor is over. After selecting a widget the user can use the input hardware on
the personal device to enter text into that widget. This input redirection adds an extra level of
security for users selecting the public only and display only trust levels.

When the user selects the type of screen in the step of the connection wizard in Figure 10,
that selection chooses both the trust level and input source. While each trust level can accept a
display server’s input (trusted or distrusted), the personal device does not necessarily accept that
input by default. The combination of trust level and input source results in eight possible options.
Rather than presenting the user with all eight options, the authors opted to provide users with what
they believed to be the options best-paired with the three most common situations, hence only
three options in Figure 10. Figure 12 enumerates each option with its trust level and input source
settings. The presented options are statically defined and are the most common options the user is
expected to encounter. The user may, at his discretion, click the ‘Advanced’ button and adjust the
trust level and input source directly, in which case all four trust levels are presented to the user
along with both input sources.

Because the dialog in Figure 10 is not actually tied to the XICE protocol but is instead part of
the UI presented to the users, other handheld providers could implement these options differently.
For example, home consumers could be presented with a dialog that is different from the dialog
shown to corporate consumers. Or the dialog’s options could be dynamically provided. For example,
when the user connects via his employer’s wireless network the widget could show him only the
work and conference room options with the conference room option listed first. Alternatively, if
the user connects via a wireless network he labeled public (e.g. through the Microsoft Windows
Network Configuration dialog) then the XICE configuration dialog could present him with just the
public only option.

5.2.1. Customizing display privacy settings. The trust level is attached to the connection infor-
mation for the shared device, and is not configured by the shared device but is configured by the
user. Different users may apply different privacy states to the same shared device. For example, a
user may set his desktop device to full trust, while a visiting coworker might consider the same
shared device to be public with input.

A user may want to change the trust level of a shared display. Consider the visiting student
situation. Suppose a teacher is preparing student grades at her desktop when a student stops by to

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
DOI: 10.1002/spe

PRIVACY-AWARE SHARED UI TOOLKIT FOR NOMADIC ENVIRONMENTS

review his grades. The teacher would want the full trust desktop display to change to public with
input so it will block her sensitive data (like others’ grades) from the visiting student.

5.2.2. Customizing window privacy settings. Each window shown on a shared device can have a
privacy setting that is independent of the device’s privacy state. On private screens, the window’s
privacy setting is ignored and sensitive data is presented. On public devices, protected windows
protect their sensitive data while exposed windows show their sensitive data. By default all windows
on public displays are protected windows but the user may change the windows to exposed
windows.

This mixed-state view of windows on the public device has some useful situations. Suppose the
student in the visiting student situation has submitted an assignment containing sensitive data; the
teacher needs to review that assignment with the student. The teacher can open the assignment
and change that window to an exposed window using the ‘Show Private Data’ menu option in
Figure 3. The teacher and the student can review the assignment as though that window is on a
private display.

5.2.3. Customizing widget privacy settings. In addition, individual widgets may have their own
privacy settings. For example, in the visiting student situation, the teacher may want to review
the student’s grades with him. If each row in the grading spreadsheet has an independent privacy
setting, the teacher may change the setting on the row containing that student’s grades. Only his
grades are presented; other students’ grades remain hidden.

5.3. Blocking data on public devices

Building a custom toolkit affords opportunities for quick and easy experimentation, solidification
of solutions built using the toolkit, and development of custom UI responses to the privacy state
of a device [25]. XICE is constructed to accomplish these goals. The rest of Section 5 focuses on
how XICE is implemented to support privacy for both users and developers.

5.3.1. Blocking windows. To show a UI on a display, an application must first build a scene-graph
representation of the UI. When the application creates a window the application supplies a scene-
graph which XICE renders on the created window. Because a scene-graph may be rendered on
one window and a window may render one scene-graph, the two terms are interchangeable.

An application may show five types of windows (scene-graphs). Plain windows do not carry
sensitive data and can be shown on public or private screens. Sensitive-data windows (like e-mails)
may initially be shown on public devices, but the application will protect the sensitive data. Private-
first windows (like instant messages) might contain sensitive data, so these windows are initially
shown on personal devices and users must explicitly choose to show them on public screens.
Private-notify windows (like file dialogs) function similarly to private-first windows, except a
notification is shown on the public screen when the private-notify window is redirected to the
personal device. Private-only windows (like login dialogs) contain only sensitive data and will
never be shown on shared devices. Users and software are not allowed to push private-only windows
to public displays.

To create a consistent experience for users XICE uses Java reflection to identify several of
these different windows. XICE detects a specific annotation, @PrivateDialog, on the root class
of a dialog’s scene-graph and inspects its properties. Then XICE can consistently redirect those
windows as necessary. XICE provides the PrivacyHandling enumeration which can be passed
to the @PrivateDialog annotation constructor for private-first (First), private-notify (Notify), and
private-only (Only) windows. For example, the XICE-supplied FileDialog type is tagged with
the @PrivateDialog annotation (circled in Figure 13), which defaults to being a private-notify. If
the @PrivateDialog annotation is detected then XICE will show that scene-graph on the personal
device instead. Plain windows and sensitive-data windows are untagged—the salient difference is
in how the application treats the data within the window.

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
DOI: 10.1002/spe

R. B. ARTHUR AND D. R. OLSEN JR

Figure 13. How to annotate a dialog as private-notify.

Figure 14. When showing a file dialog on a public display, the user is given a heads-up
dialog instructing him to look at his portable device.

If the user expects an application to show a window on the shared device, he might not realize
that the window has been redirected to the personal device. Hence, when an application launches
a private-notify or private-only window and XICE redirects it to the personal device, the toolkit
automatically shows the heads-up window in Figure 14 to cue the user to look at his personal
device.

Because the window type may be attached to the window’s scene-graph, XICE can enforce
the privacy setting for that window wherever that window is used. Otherwise, developers must
implement the redirection code everywhere they use those dialogs which may lead to occasional
leaks. Instead, by using Java annotations, developers do not have to consider privacy when showing
private-first, private-notify, or private-only dialogs. For example, XICE-supplied file dialogs and
any subclasses are tagged as private-notify; hence, the embarrassing situation illustrated in Figure 6
will not happen with any file dialog even if the application using the dialog is not privacy-aware.

All five types of windows are created by applications. To show a window, the application must
have a reference to the destination display. This reference is represented as a Space object within
XICE. One Space represents the personal device. Any annexed device is represented with an
additional Space.

The Space object has a property that contains the privacy state for the device. Applications
can query this value and make decisions independently of XICE. For example, a word processing
application may provide an option for always opening documents on private screens. If the option
is set, then the software uses code similar to the listing in Figure 15 to redirect documents to the
personal device’s display when the open command is issued via a public screen.

5.3.2. Blocking widgets. In order for a window to appear on a shared device, the scene-graph
for that window must be serialized and sent to the shared device. Widgets are embedded within
scene-graphs. XICE only serializes the graphical output of the widgets and does not serialize any
of the code that controls those widgets. XICE uses a custom text-based serialization framework
so that software in other programming languages and frameworks may benefit from XICE.

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
DOI: 10.1002/spe

PRIVACY-AWARE SHARED UI TOOLKIT FOR NOMADIC ENVIRONMENTS

Figure 15. Using this code, an application chooses where to show all newly opened documents.

Figure 16. When getting automatic privacy protection, a developer
would add the first two lines in this method.

For sensitive-data windows, developers may protect sensitive data by hiding widgets within the
window. For instance, a developer may choose to hide only the username and password boxes on
a public device, but the developer wants these boxes to show normally on private devices. XICE
provides the FullPrivacy widget to address this situation. The developer uses code similar to the
listing in Figure 16 to wrap each widget he wants protected with a FullPrivacy widget, and then
widgets containing sensitive data are blocked on public devices, but available on the user’s personal
device. The FullPrivacy widget ensures that the widget is only seen on private screens; the widget
is replaced with a gray rectangle on public screens so that none of the scene-graph produced by the
widget is transmitted to the shared device. This coding technique allows the interactive behavior
of any application to be simply wrapped within standard privacy controls.

Suppose a developer has created a simple application for organizing notes. A user can create
notes anywhere within the application window, color the notes any way he chooses, and reposition
the notes. This application is illustrated in part (a) of Figure 17. Further, suppose this developer
believes that users may want to designate certain notes as sensitive. A user would select a note then
instruct the application to tag that note as sensitive. The developer can then use the FullPrivacy
widget to protect the sensitive notes. The note widgets need not consider privacy issues and the
FullPrivacy widget knows nothing about notes but protects all interaction inside of it.

An alternate option to graying out a sensitive widget would be to hide the widget entirely. For
some users hiding such widgets may be useful. For example, the act of graying out widgets informs
other people in the room that the user does not trust them to see the contents of those widgets.
The user may want to have the widget completely hidden instead. On the other hand, hiding such
widgets makes it difficult for a user to know of the existence of the hidden widget. If he is familiar
with the application’s interface and data then hiding the widget may be acceptable. But if he is not
familiar with the interface and data then he may have trouble addressing the reviewing situation
or the field override situation. The relative benefits of both approaches must be weighed by the
application developer.

5.3.3. Customizing the public view. Application developers may want to customize sensitive-data
handling according to the shared device’s privacy state. For instance, a spreadsheet developer
might build an application that acts like a normal spreadsheet on a private screen, but hides

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
DOI: 10.1002/spe

R. B. ARTHUR AND D. R. OLSEN JR

Figure 17. Augmenting an existing application to protect sensitive data. Image (a) is
the original application. The bottom-right widget is wrapped with a FullPrivacy

widget. Image (b) shows the same window on a public device.

Figure 18. Template code for a custom visual setup. This code
checks on the privacy state of the widget’s window.

rows and columns containing financial information when shown on a public screen. Or, an e-mail
application developer might show e-mails in their entirety on a private screen and then block all
e-mail addresses embedded within an e-mail when the e-mail is shown on a public screen.

Similar to how the Space supplies its privacy state each window has an independent privacy
setting property. Applications can query this information to change their appearance. Code for
getting the privacy setting is shown in Figure 18.

Any time the privacy setting of a window changes, embedded widgets are notified of that change.
For example, when a window is pushed from a private screen to a public screen, a recontext event
occurs. A recontext event is somewhat similar in purpose to repaint or damage events in more
traditional damage/redraw architectures. When the user changes the privacy setting of a window,
the recontext event also occurs. The recontext event notifies each widget of the change, allowing
the widget to query the window’s changed privacy setting and update the widget’s output. Because
XICE delays scene-graph serialization until after all widgets have processed the recontext event,
the private view of the widget will never be inadvertently serialized to a public screen.

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
DOI: 10.1002/spe

PRIVACY-AWARE SHARED UI TOOLKIT FOR NOMADIC ENVIRONMENTS

Figure 19. A possible synchronized custom view. The public display (left) blocks sensitive
data. The portable device (right) simultaneously shows the same spreadsheet with the sensitive

data exposed (the highlighted rows at the bottom and near the top).

5.4. Reviewing sensitive data

Blocking sensitive data on applications can become frustrating to users who need frequent access
to that data. If a user can access his sensitive data without exposing it on a public screen, as in
the reviewing situation, his privacy remains protected.

XICE facilitates reviewing sensitive data on a personal device without exposing that data on
shared devices. Reviewing is supported for windows, widgets, and custom reviewing situations.

5.4.1. Reviewing windows. Consider the spreadsheet application mentioned in Section 5.3.3. If a
user opens this application on a kiosk in a public environment, he may want to see broad overviews
of the data without exposing individual values. The user could interact with a spreadsheet on a
public screen, and sensitive data in the corresponding cells will be highlighted on the personal
device. Then the user can glance at his personal device to see the actual values without exposing
the sensitive data on the shared device. Synchronizing the public screen and personal device
spreadsheet views is particularly helpful if the personal device is a handheld which can only show
a few columns and rows of data at once. The synchronized view is illustrated in Figure 19.

To synchronize the two spreadsheet views, one solution would be to put the widget in both scene-
graphs. However, if widgets were in multiple scene-graphs, a single widget instance would have to
support a potentially unlimited number of contexts (i.e. privacy settings for each window), states,
and sub-graphs. To minimize the demand on the widget, simplify the scene-graph representation,
and streamline the serialization process, XICE does not allow a widget to be embedded in multiple
locations. Instead, widgets built using model-view-controller design facilitate the same visual
result—two views which share the same model.

To create synchronized views across devices, XICE ensures that all view-controllers (scene-
graphs and widgets) can be cloned and that cloned view-controllers share the same model. As
XICE clones each widget, only its view-controller is copied; then the copy is pointed at the original
widget’s model. The cloned scene-graph is rendered on a new window on the personal device. The
original view remains on its window on the shared device and retains its privacy settings.

From the user’s perspective cloning windows is straightforward. To create a clone of a protected
window on the personal device, the user clicks the ‘Copy To Handheld’ menu option in the title
bar of the protected window (Figure 20). XICE then clones the scene-graph and renders the clone
on a new window on the personal device.

5.4.2. Reviewing widgets. Section 5.3.2 mentions blocking a username and password using the
FullPrivacy widget, but a user must still be able to enter input to those widgets via his personal

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
DOI: 10.1002/spe

R. B. ARTHUR AND D. R. OLSEN JR

Private: Public:

1) Push to the connected display called “Orca”
2) Push this window to another display
3) Copy this window onto this Space
4) Pull back this window to the personal display
5) Copy this window onto the personal display
6) Change to expose sensitive data in this window
7) Change the privacy settings for the display

Legend

1

3

2

4

5

2

3

6

7

Figure 20. Privacy-related menu options on the title bar of every window. Some options are specific to
public displays so users can properly protect their data.

Figure 21. Hovering over a FullPrivacy widget on a public display (right)
shows the blocked widget on the personal display (left).

device. When annexing a private screen, he can access the username and password normally. On
a public screen, he must take a few extra steps. First, he clicks on (or hovers the cursor over)
the gray rectangle where the username or password textbox should be. The FullPrivacy widget
then shows the textbox on the personal device (this is illustrated in Figure 21). He then clicks the
textbox on the personal device and enters his credentials using the personal device’s input. This
interaction redirection is completely invisible to the application.

5.4.3. Custom reviewing. If a developer chooses to customize data blocking, XICE provides
window and device privacy states, but does not offer much other assistance. Any custom reviewing
will require more programming time and effort. The developer may instead decide to rely on
XICE’s cloning infrastructure (Section 5.4.1) to resolve the reviewing situation.

5.5. Privacy control

In addition to reviewing sensitive data on the personal device, users may want to show that data
on a public screen. Perhaps the user does not consider the data sensitive for a particular audience.

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
DOI: 10.1002/spe

PRIVACY-AWARE SHARED UI TOOLKIT FOR NOMADIC ENVIRONMENTS

XICE facilitates users showing windows and widgets on public screens, and supplies applications
with enough information to implement custom data exposure options.

5.5.1. Showing windows. Whenever a shared device is annexed, a connection management window
is shown on the personal device. On this window, a button click causes the privacy state of the
Space to change from public to private or vice versa. This functionality addresses the portion of
the visiting student situation when the teacher must change her desktop to the public state.

Each window on a public display has the ‘Show Private Data’ menu option, which allows the
user to expose all sensitive data on that window. This menu option resolves the e-mail issue raised
in Section 3 by allowing users to show individual e-mails and all the sensitive data in them on
public screens, if they so desire.

5.5.2. Showing widgets. If a developer uses the FullPrivacy widget to block another widget, the
user can expose the blocked widget on a public screen. On public screens, when the user clicks
on the gray rectangle that replaces the private widget, a ‘Show Data’ option is provided which
exposes the blocked widget. When the input is tagged as unsafe, the user must confirm that widget
exposure on the personal device. This option remedies the field override situation (mentioned in
Section 3).

5.5.3. Custom showing. If a developer chooses to customize sensitive data blocking, he should also
create code for exposing that data. While the developer could rely on the ‘Show Private Data’ menu
option to show the sensitive data, this solution is discouraged, because all sensitive data would
show on that window and the user may only want to show a portion of the sensitive data. Instead,
the developer should provide custom tools for exposing individual pieces of sensitive data.

For instance, in the visiting student situation, the teacher wants to review only one student’s
grades. On a public screen, the spreadsheet application could provide a custom context menu to
allow the teacher to expose only a single row of data—the row containing that student’s grades.
The spreadsheet would track exposed cells and protect all other cells containing sensitive data.

5.6. Developer summary

An important feature of XICE is the simplicity it affords developers when creating privacy-sensitive
applications. This simplicity surfaces at the toolkit, window, recontext, and widget levels.

First, because overall privacy settings are tracked by the toolkit, developers do not need to add
an overall privacy-tracking solution to their application and users have a consistent, central location
for specifying the privacy state of a shared display.

Second, if a scene-graph is tagged with a @PrivateDialog annotation, then that scene-graph’s
privacy behavior will be interpreted consistently wherever the scene-graph is used. Consequently
a developer’s decision about privacy may be made once when the scene-graph for that dialog is
designed, but enforced everywhere that scene-graph is used without rethinking about the privacy
decision. Even developers who do not consider privacy when developing their applications can
benefit. An application that uses the FileDialog scene-graph, or any subclass thereof, will auto-
matically use that dialog in privacy-sensitive ways.

Third, because of the recontext event and independent privacy states for each window, developers
can depend on getting and processing the recontext event before the scene-graph is serialized to
the shared device. This ensures that no application-known sensitive data is transmitted to a public
screen. If privacy is implemented externally to the UI distribution software then this guarantee is
more difficult to ensure.

Finally, developers can wrap widgets with a FullPrivacy widget to protect that widget’s contents.
If the developer so desires, he may integrate the FullPrivacy widget into the custom widget so that
everywhere the custom widget is used its sensitive data is protected.

In addition, developers can create individual widgets which perform custom privacy protec-
tions, typically with little effort. For example, a spreadsheet application is available that uses
XICE as its rendering framework. This application represents well over 200 h of development

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
DOI: 10.1002/spe

R. B. ARTHUR AND D. R. OLSEN JR

time, most of which involved writing spreadsheet functions. Privacy-aware shared UI features were
added to this application after it was fully developed. The new privacy features required less than
8 h of another developer’s time. The second developer was not involved in coding the spread-
sheet application; hence, the 8 h include his time discussing the existing design with the original
programmers. However, the second developer was very familiar with XICE’s design (he designed
XICE); hence, overhead related to the overall windowing toolkit was low. This time also included
adding application-specific storage of ‘private’ tags to the spreadsheet’s data file. The incorporated
privacy-aware shared UI features allow rows, columns, or cells to be marked sensitive, and then
sensitive rows and columns are hidden on public screens while sensitive cells are grayed out. The
synchronized view in Figure 19 demonstrates this spreadsheet application in use.

6. USABILITY WALKTHROUGH

Evaluating the usability of toolkits is difficult. Part of this difficulty is because the toolkit is a
large development effort. User evaluations provide tight data for controlled experiments with few
variables, but toolkits have so many variables that exactly quantifying the effect of each feature on
the overall experience is difficult [26]. Therefore, usability experiments are either trivial—collect
conclusive data on a small feature—or cannot be generalized—too complex or require too many
caveats to be useful. Because a usability experiment on XICE would be too complex to provide
useful data, this paper does not include a user study but includes a usability walkthrough.

By doing a walkthrough, one can perceive the burden on a user and characterize the decisions that
he must make. In particular, this walkthrough answers questions about when the user encounters
the shared UI privacy features and how the user can choose to change privacy settings.

6.1. Home/work displays

Consider a user who just purchased a new XICE-enabled cell phone and who is connecting it to
his home desktop screen for the first time. To connect to his home display he must configure the
display using the wizard in Figure 10.

He could correctly click the ‘Home/Work’ button, or he could click the ‘Public’ or the ‘Confer-
ence Room’ button. Regardless of the choice the user makes, the new connection wizard in
Figure 10 will not reshow when he connects to that display again. If the user correctly chooses the
‘Home/Work’ button, he will receive no further privacy settings or warnings, which is appropriate
because he is using his home screen.

Let us assume that the user picks the ‘Public’ option. He then attempts to open a word processing
document via his home display. Because the software is informed that the display server is
distrusted, the XICE toolkit redirects the file dialog to the cell phone, similar to Figure 14.

It is likely that either now or at some future point (because sensitive dialogs are continually
redirected to the personal device) the user will become annoyed and desire to change this setting.
On the redirected dialog, as shown in the upper-right of Figure 22, XICE provides the ‘Settings. . .’
button which the user may click to change the privacy settings.

Clicking the ‘Settings. . .’ button shows the configuration wizard in Figure 10, again. At this
point the user may choose to reconfigure the display as a ‘Home/Work’ display which causes
the software to treat the display as full trust. From that time forward, the user will not see any
protections for his sensitive data whenever connected to that display.

6.2. Corporate conference room

When the user first connects to the conference room at his work, he is presented with the config-
uration wizard. If the user chooses the ‘Conference Room’ option, he can show output on the
display server and use the input from the display server. In addition, his sensitive information such
as instant messages will not show on the shared display.

As the user discusses data within various applications, he can choose to push windows containing
sensitive data to the shared display. He may also choose to show any embedded sensitive data

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
DOI: 10.1002/spe

PRIVACY-AWARE SHARED UI TOOLKIT FOR NOMADIC ENVIRONMENTS

Figure 22. A redirected dialog presents the ‘Settings. . .’ button which the
user may use to access and adjust the display’s privacy settings.

using the ‘Show Private Data’ menu option, or whatever other means the software may provide
for overriding privacy settings. For example, if the user has a spreadsheet with sensitive data in it,
he may share that window on the conference room screen. The spreadsheet will be shown and the
sensitive data blocked from appearing. The user can then selectively expose sensitive data within
rows, columns, or cells.

If, when configuring the connection, the user instead chooses the ‘Home/Work’ option, then
he may be embarrassed by an e-mail or instant message, or may accidentally share sensitive
information (e.g. in a spreadsheet). To change the settings so that he is better protected, the user may
click the ‘Settings. . .’ option on any window he shared on display server (option 7 in Figure 20).

6.3. Foreign conference room

The user will likely visit other institutions and may be asked to give a presentation in their
conference room. When the user annexes the display server in that conference room, he is shown
the configuration wizard.

In the foreign conference room, the correct privacy selection for display server is ‘Public.’
Choosing ‘Public’ reduces the chances for the user’s device to be exploited if the display server is
malicious (e.g. the maintenance staff is unaware that the display server is infected with malware).
The user could choose to accept input from the display server, and the user is still protected from
potentially malicious input.

If, on the other hand, the user chooses ‘Conference Room’ and the institution he is at is
trustworthy, then the user is unlikely to be exploited. However, he could be exploited if the display
server harbors malicious software. For this reason, the ‘Conference Room’ option includes a
description discouraging its use when annexing foreign display servers.

Unfortunately, if the user chooses ‘Home/Work’ for the foreign display, then he may experience
privacy violations. Instant messages, file dialogs, or other sensitive data could alert him to his
poor choice, and he can subsequently change the privacy settings for that display. After presenting
the configuration wizard, the windowing toolkit has attempted to inform a user and help him
make good choices about how to connect to a display server. Further explanations may be made
available (e.g. through hyperlinks), or the user may be provided with the opportunity to engage in
further training to help him understand the privacy system, potential violations, etc. Such a training
program may be a help manual, a game, or some other useful, but non-intrusive option. Raja et al.
have done research showing promising ways to help inform users of the current firewall state and
such research should be incorporated in final production dialog designs [27].

Currently people can sense better what kind of environment they are in, but they must be aware
of the potential threats as well as opportunities. Some sort of training is necessary to help humans
understand how to make appropriate privacy-related choices. When sensing devices improve to
the point that the handheld can sense as well as, if not better than, a human then the portable

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
DOI: 10.1002/spe

R. B. ARTHUR AND D. R. OLSEN JR

device may be able to assume the responsibility of making these choices. But with current sensing
technologies, the toolkit can only present users with options and attempt to quickly inform users
of the implications so that users may make informed decisions.

6.4. Airplane

When traveling via airplane to another location, the user may encounter a display server embedded
in the screen at his seat. Annexing that display server shows the connection wizard yet again.
Although the airline is likely to have a maintenance staff which maintains the display server and
keeps it free of malware, the environment is public; other passengers could see what the user is
working on.

If the user chooses ‘Public’ or ‘Conference Room’ he will be properly protected. But if he
chooses ‘Home/Work’ he will suffer from the same problems he could encounter if he chose
‘Home/Work’ at the foreign conference room.

6.5. Foreign displays

The user will continue to encounter display servers in a variety of environments. Many, if not most,
of these display servers will be owned by other institutions or in public environments. If the user,
out of convenience, chooses to make each display a ‘Home/Work’ display, his user experience will
be smooth in most cases. Unfortunately, he may encounter a malicious display server at some point
and the toolkit will not prevent the shared-UI-specific exploits. Thankfully, if the user correctly
chooses to make each subsequent display ‘Public’ he will be properly protected by the toolkit and
his applications. The configuration wizard in Figure 10 provides a checkbox titled ‘Treat all future
screens as public and don’t ask me again’ which may be used to smooth the configuration process
while keeping the user safe.

7. ALTERNATE IMPLEMENTATIONS

The XICE Framework is not the only way to implement a consistent privacy-aware shared UI
framework that resolves the five key problems. This section will explore the requirements for imple-
menting a privacy-aware framework in another windowing toolkit, such as Microsoft Windows,
Java Swing, and Magic Lenses [28] or Attachments [29].

For the user, the solution must have two parts. He must be able to specify the privacy state
of a shared device and whether he is comfortable showing a particular window. In order for the
developer to support these two features, he must also have access to the privacy state and receive
notifications when the privacy state changes. With these four parts in place, developers can create
custom privacy-aware presentations for their software.

Personal devices that can annex at least one additional display can support a privacy-aware
windowing toolkit. The toolkit must include a suitable UI distribution framework. This distribution
could be provided by VNC, X11, RDP, etc. Ideally, the distribution framework would be simple
and easy to implement for stand-alone display servers, allowing any personal device from any
manufacturer to annex the display server and distribute UIs to it. XICE fills this requirement.

If the UI distribution framework is just a VGA cable, a privacy-aware framework is possible,
but properly protecting windows with sensitive data may necessitate some constraints. Imagine a
window that opens across two screens—one on the personal screen (private) and the other on the
annexed screen (public). If widgets change size or position based on the display’s privacy state,
providing a consistent and understandable layout for windows that contain sensitive data becomes
difficult. Constraining the window to either the public device or personal device is much easier.
The windowing toolkit should ensure the window always has a single privacy setting, even if the
window is partially on each display.

Once users can specify trust levels for devices and windows, the rendered output of applications
needs to be augmented to protect privacy. If applications are privacy-aware, they may augment

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
DOI: 10.1002/spe

PRIVACY-AWARE SHARED UI TOOLKIT FOR NOMADIC ENVIRONMENTS

themselves. However, if an application is not privacy-aware, a well-designed windowing toolkit
can aid in protecting user privacy by blocking file dialogs.

Magic Lenses [28] offer a means for augmenting an application’s graphical output without the
application’s direct knowledge. A lens is a virtual peephole or viewport over the application. Within
that viewport, an augmented view of the application is exposed. This augmented view may make
lines dotted, squiggly, or a different color, potentially to obscure sensitive data. Any rendering
command can be augmented to yield a different appearance for an application.

Attachments [29] allow one application to attach data to the visual output of another application.
The application constructing the attachment accepts the original rendering commands of the source
application and then adds rendering commands around detected widgets, similar to Magic Lenses.
During the attachment process original rendering commands may also be augmented.

Magic Lenses or Attachments could become means for implementing privacy awareness. Either
of the tools would be used where a public screen has a full-screen lens that affects all applications
shown on that screen. Applications would render themselves normally, and then the privacy lens
would obscure potentially sensitive data (e.g. e-mail addresses, proper names, file paths, etc.).

One significant benefit of a lens-based system is that developers would not need to consider
privacy when writing applications. As a result, however, developers may be discouraged or
prevented from developing novel privacy solutions, in effect, hampering progress in this field. In
addition, a side-effect of Magic Lenses and Attachments is that a widget’s graphical output is
basically the same size regardless of the lens—the lens has a difficult time effectively resizing
widgets and drastically changing graphical output within the viewport while maintaining normal
user interaction.

Of course, in each of the mentioned alternate systems, input from annexed devices to the
personal device must also be treated according to the trust level of the device. Input would
need to be tagged with the input source’s trust level, so that applications can make appropriate
decisions, like allowing, blocking, or confirming input on the personal device when input affects
sensitive data.

8. CONCLUDING REMARKS

The proposed XICE privacy framework resolves the major issues involved in allowing users to
annex shared devices. XICE demonstrably protects users from the five key privacy problems of
stolen output, stolen input, false input, false output, and embarrassment. Vital to the success of
the proposed solution is a simple content control system and information about whether a screen
is private or public and its input is trusted or distrusted. Using this privacy information, the
windowing toolkit and any applications running on it can prevent sensitive data from showing on
public displays (by altering their appearance), discourage users from entering private information
on public devices, and mitigate the effects of actively malicious devices that falsify user input or
graphical output.

Users can manage their privacy needs using the privacy-aware framework, XICE. In particular,
a foreign device is treated as public and distrusted by default. The user can change, as needed, the
privacy state for that device, for windows shown on that device, and for privacy-aware widgets
within those windows.

XICE provides a flexible, powerful privacy framework to developers. This framework requires
less overhead for creating privacy-aware applications than building such applications via existing
UI distribution frameworks. In particular, using annotations and the FullPrivacy widget allow
developers to protect sensitive dialogs and widgets by designing that protection into the widget
instead of implementing the protection code everywhere the dialogs or widgets are used.

Implementing privacy awareness does not need to be constrained to XICE, but should be part
of any windowing toolkit that annexes shares devices. As people become increasingly mobile, the
need to annex devices will grow, privacy will become an even greater concern, and a privacy-aware
toolkit will become a necessity.

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
DOI: 10.1002/spe

R. B. ARTHUR AND D. R. OLSEN JR

REFERENCES

1. Scheifler RW, Gettys J. The X Window System. ACM Transactions on Graphics 1986; 5(2):79–109. DOI:
http://doi.acm.org/10.1145/22949.24053.

2. Tritsch B. Microsoft Windows Server 2003 Terminal Services. Microsoft Press, 2003.
3. Richardson T, Stafford-Fraser Q, Wood KR, Hopper A. Virtual network computing. IEEE Internet Computing

1998; 2(1). DOI: http://doi.acm.org/10.1145/22949.24053.
4. Sharp R, Madhavapeddy A, Want R, Pering T. Enhancing web browsing security on public terminals using

mobile composition. Proceeding of the 6th International Conference on Mobile Systems, Applications, and
Services, MobiSys ’08, Breckenridge, CO, U.S.A., 17–20 June 2008. ACM: New York, NY, 94–105. DOI:
http://doi.acm.org/10.1145/1378600.1378612.

5. Arthur R, Olsen DR. XICE windowing toolkit: Seamless display annexation. ACM Transactions on Computer–
Human Interaction (ToCHI) 2011.

6. Facebook. Available at: http://www.facebook.com/ [October 2010].
7. MySpace, MySpace, Inc. Available at: http://www.myspace.com/ [October 2010].
8. Howard M, LeBlanc D. Writing Secure Code (2nd edn). Microsoft Press, 2003.
9. Apple Computer. Macintosh. Apple Computer. Available at: http://www.apple.com/mac/ [October 2010].
10. Izadi S, Brignull H, Rodden T, Rogers Y, Underwood M. Dynamo: A public interactive surface supporting

the cooperative sharing and exchange of media. User Interface Software and Technology (UIST ’03). ACM:
New York, 2006; 159–168. DOI: http://doi.acm.org/10.1145/964696.964714.

11. Want R, Pering T, Danneels G, Kumar M, Sundar M, Light J. The Personal Server: Changing the way we
think about ubiquitous computing. Ubiquitous Computing (UbiComp ‘02). Springer: Berlin, 2002; 223–230. DOI:
http://dx.doi.org/10.1007/3-540-45809-3 15.

12. Hawkey K, Inkpen KM. PrivateBits: managing visual privacy in web browsers. Proceedings of Graphics Interface
2007 (GI 2007). ACM Press: New York, 2007; 215–223. DOI: http://doi.acm.org/10.1145/1268517.1268553.

13. Tarasewich P, Gong J, Conlan R. Protecting private data in public. CHI ’06 Extended Abstracts on
Human Factors in Computing Systems (CHI 2006). ACM Press: New York, 2006; 1409–1414. DOI:
http://doi.acm.org/10.1145/1125451.1125711.

14. Berry L, Bartram L, Booth KS. Role-based control of shared application views. Proceedings of the 18th Annual
ACM Symposium on User Interface Software and Technology (UIST 2005). ACM Press: New York, 2005; 23–32.
DOI: http://doi.acm.org/10.1145/1095034.1095039.

15. Berger S, Kjeldsen R, Narayanaswami C, Pinhanez C, Podlaseck M, Raghunath M. Using symbiotic displays to
view sensitive data in public. Third IEEE International Conference on Pervasive Computing and Communications
(PerCom 2005). IEEE Computer Society: Silver Spring, MD, 2005; 139–148. DOI: 10.1109/PERCOM.2005.52.

16. Oprea A, Balfanz D, Durfee G, Smetters DK. Securing a remote terminal application with a mobile trusted
device. 20th Annual Computer Security Applications Conference (ACSAC ’04), 6–10 December 2004; 438–447.
DOI: http://doi.ieeecomputersociety.org/10.1109/CSAC.2004.33.

17. Sharp R, Scott J, Beresford AR. Secure mobile computing via public terminals. Proceedings of the International
Conference on Pervasive Computing (PerCom 2006). IEEE Computer Society: Silver Spring, MD, 2006; 238–253.
DOI: http://dx.doi.org/10.1007/11748625 15.

18. Yue C, Wang H. SessionMagnifier: A simple approach to secure and convenient kiosk browsing. Proceedings of
the 11th International Conference on Ubiquitous Computing (Ubicomp ’09), Orlando, FL, U.S.A., 30 September–3
October 2009. ACM: New York, NY, 125–134. DOI: http://doi.acm.org/10.1145/1620545.1620566.

19. GKS (Graphical Kernel System), ANS X3.124-1985 ANSI, December 1984.
20. Shuey D, Bailey D, Morrissey TP. PHIGS: A standard, dynamic, interactive graphics interface. Computer Graphics

and Applications 1986; 6(8):50–57.
21. Microsoft Corporation, Silverlight. Available at: http://www.microsoft.com/silverlight/ [June 2010].
22. Petzold C. Applications = Code + Markup: A Guide to the Microsoft Windows Presentation Foundation. Microsoft

Press, 2006.
23. Oracle Corporation. JavaFX. Available at: http://www.javafx.com/ [February 2010].
24. Apple Computer. Bonjour. Available at: http://www.apple.com/support/bonjour/ [October 2010].
25. Bederson BB, Grosjean J, Meyer J. Toolkit design for interactive structured graphics. IEEE Transactions on

Software Engineering 2004; 30(8):535–546. DOI: http://dx.doi.org/10.1109/TSE.2004.44.
26. Olsen DR. Evaluating user interface systems research. Proceedings of the 20th Annual ACM Symposium on User

Interface Software and Technology (UIST ’07), Newport, RI, U.S.A., 7–10 October 2007. ACM: New York, NY,
2007; 251–258. DOI: http://doi.acm.org/10.1145/1294211.1294256.

27. Raja F, Hawkey K, Beznosov K. Towards improving mental models of personal firewall users. Proceedings of
the 27th International Conference Extended Abstracts on Human Factors in Computing Systems (CHI EA ’09).
ACM: New York, NY, 2009; 4633–4638. DOI: http://doi.acm.org/10.1145/1520340.1520712.

28. Bier EA, Stone MC, Pier K, Buxton W, DeRose TD. Toolglass and magic lenses: the see-through interface.
Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH
1993). ACM Press, 1993; 73–80. DOI: http://doi.acm.org/10.1145/166117.166126.

29. Olsen DR, Hudson SE, Verratti T, Heiner JM, Phelps M. Implementing interface attachments based on surface
representations. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI 1999).
ACM Press: 191–198. DOI: http://doi.acm.org/10.1145/302979.303038.

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
DOI: 10.1002/spe

