
����������	�
����	�����������	�����������	

Jerry Alan Fails, Dan Olsen, Jr.
Computer Science Department

Brigham Young University
Provo, Utah 84602

{failsj, olsen}@cs.byu.edu

�

��
������

This paper describes a system for ubiquitous interaction
that does not require users to carry any physical devices. In
this system, the environment is instrumented with cam-
era/processor combinations that watch users while protect-
ing their privacy. Any visible surface can be turned into an
interactive widget triggered by skin-colored objects. Light
widgets are tied to the XWeb cross-modal interaction plat-
form to empower them with interactive feedback.

�	�����
�

Ubiquitous computing, computer vision, cross-modal inter-
action

����� !"�����

Following Moore’s Law, computing continues to evolve
rampantly. This has caused the ratio of computing devices
to humans to drastically increase. In this socio-technical
setting, the desktop has become too restrictive for most
situations where people work and play. This has led to ex-
tensive research in the realm of Ubiquitous Computing [12,
13, 11, 1, 10, 16]. Unfortunately, much of the research
involving ubiquitous computing requires the user to wear or
carry with them some sort of physical device. Such devices
provide user identity, detect tags in the environment, detect
user gestures, or provide display capabilities. However,
carrying a physical device is inconvenient. The problem is
to create a low-cost, versatile, adaptable and integrated
ubiquitous system that can be used in any indoor space
without carrying anything. To accomplish this, we mount a
series of cameras that can watch what the user is doing and
perform interactive behaviors based on the surfaces the user
touches.

!��#$���$
�"�%�$��������$�%	�	���	�&����

Traditionally, ubiquitous computing and augmented reality
have had many common goals. Projects like NaviCam [11]
and Cyberguide [1] attempt to view the real world while

touring through it and augmenting the view with digitized
information. There are yet other systems like the Gesture
Pendant [13] that require the user to carry a device with
them that does gesture recognition, but still manipulate digi-
tal data. We are not trying to augment the world with in-
formation, but integrate interactivity into the physical
world. We strive to instrument the environment with inex-
pensive devices that allow users to manipulate digital in-
formation.
Instrumenting the environment for ubiquitous interaction is
not a novel idea. Many systems have used environment
tags, both electro-magnetic and visual, to be able to locate
users or objects within the environment, and set values ac-
cording to their placement [7, 14]. The commonly used
electro-magnetic tracking system used is RFIDs (Radio
Frequency Identification) [8, 14]. RFID tracking requires
the user to carry an RFID with antennas scattered through-
out the environment, or to carry an antenna and scatter
RFID tags throughout the environment. Neither of these
options satisfies our goal of not requiring the user to carry
any physical device. Instead, we took the visual approach
by using simple computer vision. We chose this approach
because it does not require the user to carry anything and it
is easy to dynamically reconfigure.
In this project, we have geared our efforts towards simple
ubiquitous computing. In so doing, we have not ignored the
vital issue of user feedback, which is crucial to all comput-
ing systems. Feedback in our system is achieved by inte-
gration with the XWeb system. This affords instant cross-
modal interaction [9]. By tying our system to XWeb, all
XWeb interactive clients and servers are available to pro-
vide feedback. Currently there are XWeb clients imple-
mented for: speech, wall, projector, TV and desktop inter-
activity; XWeb servers include X10 and desktop environ-
ments.

����������	����
�	%���	���	��

Light widgets are predefined widgets that allow users to
select values with their hands, as in Figure 1. Triggering of
a light widget occurs when skin is detected on the light
widget. This differs from gesture-based systems like Ges-
ture Pendant [13] because value selection is based simply
by skin color detection in the light widget regions.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
IUI’02, January 13-16, 2002, San Francisco, California, USA.
Copyright 2002 ACM 1-58113-459-2/02/0001…$5.00.

63

Figure 1 — Multi-camera detection

The simple skin detection technique we use demands a
multi-camera system for correct detection of when a user is
using a light widget. If, for example, we only used Camera
1 in Figure 1, then both hand positions would activate the
light widget represented by the dotted area. By triangulat-
ing with both cameras, only the lower right-hand triggers
detection. This multi-camera system decreases the amount
of false-positives.
Using light widgets, a user could, for example, control the
volume of his/her stereo using a slider-type light widget
placed along the side of a desk. The user could then slide
their hand along the side of the desk until the desired vol-
ume was reached. Just as easily, a mechanic could control
the height of the car he is working on by placing a light
widget along the wall, on the floor or across the top of a
stationary toolbox. A light widget could be advantageous
in this setting as the mechanic may not want to remove him-
self from the place he is working just to adjust the height of
the vehicle. Another user might create two light widgets on
the headboard of her bed and one on the nightstand next to
it. She could create a light widget to turn the TV off and on

by touching the corner of the nightstand, set the volume by
touching the pole of the headboard, and change the station
by moving her hand across the top of the headboard. This
example is illustrated in Figure 2.
The above examples show the contrast between our ap-
proach and tagging. Picking up an object such as a tag or
antenna to change the volume or raise a car is much less
convenient than simply touching a spot with your hand. In
addition, any object small enough to carry conveniently can
get lost in a shop or on a desk. Another advantage of using
computer vision and cameras is we enable multiple light
widgets to be monitored by one camera pair. This supports
diverse interactions at low cost.
The above examples can also be compared with a system
like Gesture Pendant. First, to use the Gesture Pendant
system, the user would have to have the physical Gesture
Pendant device with them. Then the interaction would in-
clude using speech to choose an interactor, followed by a
gesture to modify the selected interactor. Using light wid-
gets the user can set up interactors anywhere and select and
adjust that interactor simultaneously, by simply moving
his/her hand to adjust the value. The interaction using light
widgets is more simplistic because the user need not have a
physical device with her/him, nor need s/he previously
specify which interactor the gesture will modify.
Light widgets are designed to easily fit into the user’s envi-
ronment and provide access to technology at low cost. In
the same way as motion sensor lights are used for patios
and yards, light widget systems blend easily into the envi-
ronment and facilitate access to electronic resources. Each
system (pair of cameras) can manage several light widgets,
as well as manipulate varied value types of different ob-
jects. Although light widget sensor’s versatility in scale and
range greatly exceed motion sensor lights, the comparison
displays how the placement of cameras, similar to motion
sensor lights is trivial, unobtrusive and practical.
There are several issues that need to be addressed in creat-
ing such a system. These issues are:
• What kinds of interactions are possible using cameras?
• Can the technology be cheap enough to be ubiquitous?
• How do we provide feedback since cameras are input-

only devices?
• How do we ensure privacy with our use of cameras?
• How does a user configure light widgets and integrate

them with other interactive facilities?

����������	
���
��	�����	���������
The light widget system currently implements simple con-
trols for setting atomic data types: switches, numbers, dates
and times. Users can perform all interaction by placing a
hand on a surface area configured as a light widget. Button
light widgets allow things to be turned on and off, while
linear and circular light widget areas control continuous

Figure 2 — Bedroom/headboard example;
TV controlling light widgets

64

values. The camera processing for these tasks is simple
skin blob detection.

�	����	�����
��	������
We propose a modification to Figure 1 by adding micro-
controllers to each individual camera. This modification
allows each camera to process the image locally and then
report detected light widget values to a server. Each micro-
controller will be responsible for two things: skin-blob de-
tection and light widget value approximation. To minimize
costs these micro-controllers cannot be very powerful. We
need to minimize the skin-detection processing as well as
the light widget evaluation. The functionality of the micro-
controller is shown in Figure 3. When manufactured in
quantity, each computer/camera combination should cost
about the same a motion sensor light.

Figure 3 — Micro-controller functionality

In our demonstration prototype we did not use micro-
controllers on each camera. Instead we used multiple
threads on a single PC, one for each camera and one for the
server. As will be shown later, the algorithms used for
these two computations are simple enough to download
onto small, inexpensive micro-controllers.

�������	����������
Just like traditional GUIs, there must be some form of feed-
back in response to user gestures. Some ubiquitous interac-
tion projects have used projectors as their means of feed-
back [15, 17]. Projectors can be very expensive which de-
fies our goal of low-cost ubiquitous computing. Even
though cameras are input-only devices, light widgets must
provide some feedback mechanism to the user. For exam-
ple, light widgets must provide feedback when a user
changes the optimal temperature on a thermostat linear light
widget. With light widgets, the user does not change a
physical object and the new setting is not always physically
manifest. Hence the user must rely on some other mode of
feedback. We provide this feedback by integrating light
widgets with the XWeb cross-modal interaction platform
[9].
XWeb provides subscription services to data, which enables
interactive clients to monitor data changes. Through this
subscription mechanism, any number of XWeb interactive
clients can be slaved together. Any interaction in one client
results in changes being propagated to all other clients
viewing the same data. We have implemented XWeb cli-
ents for projectors, TVs, the traditional desktop, wall pens,
laser pointers and speech. This means that by integrating
with XWeb we can allow instant access to any of these
means of feedback. If there is a TV in the room where the

light widgets are being monitored, when a light widget is
used, the manipulated data can report as changed on the TV
screen. If we are in a more obscure location, the speech
client offers a fitting feedback mechanism for light widgets.
This capturing of devices already in the user’s environment
continues to meet our goals of ubiquitous computing. By
using the cross-modal features of XWeb, we allow projec-
tors to be a manner of feedback, while still providing sev-
eral other less expensive feedback mechanisms.

�	����	���������
Our bed/headboard TV controller example illustrates the
need to address the issue of privacy. If our light widget
cameras sent images out of the room, privacy would be
violated and people would feel very uncomfortable. Hud-
son’s response to this privacy issue is to obscure people so
they cannot be personally identified [6]. This is not suitable
for our interactive needs. Our solution is to have each cam-
era process the image locally and report its conclusions to a
server. Each camera need only transmit the camera identi-
fier, the light widget identifier and its approximated se-
lected value, as shown in Figure 3. If the images never
leave the camera, then the privacy problem is vastly re-
duced. It is still possible to detect interactive activity, but
nothing else. If the user does not activate a light widget
then no information leaves the camera. This solution al-
lows light widget cameras to be used in personal spaces,
like the bedroom, where image transfer is inappropriate.
We think of them not as cameras but as “optical interactive
gesture detectors”. To users in the bedroom this difference
is important.

��	������	������
������
��
A user needs to be able to easily configure a light widget.
We created a simple application that takes a snapshot from
each camera and then allows the user to draw the light wid-
gets onto the snapshots. The user can then create a link
between an existing XWeb interface and the light widget.
A problem with this configuration approach is getting the
snapshot images from the cameras, without violating pri-
vacy. One answer is to have a USB or other inexpensive
connection attached to each camera to retrieve images.
Although other configuration methods could be used, by
using a USB connection, the user knows whether images
are leaving the room or not, as a physical device must be
plugged in for external image transfer to occur.

��'(���� '����)*��)���������

Having defined our goals for light widgets, we must address
the implementation issues. The two key issues are image
processing (detecting basic interaction) and XWeb integra-
tion.

 	�	�����+�
�����	�������

Since light widgets are selected using hands, an efficient
skin-detection algorithm is required in their implementa-
tion. Much research continues to be done in the area of

65

skin-detection [19, 5, 4, 2]. These techniques vary in accu-
racy and processing requirements. By weighing the com-
puting cost relative to the efficiency we decided to use a
mixture of the Bayesian and Parzen window algorithms,
based upon Zarit, Super and Queck [20]. This algorithm
requires a set of training examples to be fed to a color train-
ing application. We use hue and saturation for skin-
detection, because it is commonly accepted that hue and
saturation are more robust to illumination differences and
different skin colors. We quantize hue and saturation val-
ues into a 60x60 look-up table. Using Bayesian probabili-
ties we compute a skin/no_skin value for each cell in the
table. Using this algorithm, skin detection becomes a sim-
ple matter of indexing into this table with hue and satura-
tion values. It is now simple to classify each pixel as skin
or not skin. This trivial algorithm affords great speed, low
memory and approximately 85% accuracy. This skin color
detection algorithm allows less expensive hardware to be
used and achieves comparable results to the more complex
skin-detection algorithms. We get further speedups by not
considering all pixels in the camera image, but only those in
the area of each light widget. Thus we look at less than
10% of the pixels in an image.
All light widget interaction is based upon skin-detection.
As shown in Figure 1, light widgets can be set up in any
region seen by two cameras. Light widgets are triggered by
skin colored objects that are placed on the surface of a light
widget’s visible area. Each camera finds skin color blobs,
computes their center of mass and then evaluates an ap-
proximated light widget value based on that center of mass.
Each camera reports their approximated values to a server
that resolves the votes for each approximated value.
The server will set the value if and only if two or more
cameras report a similar value. So, in the case of Figure 1,
the hand directly on the light widget will be detected as a
selection as both cameras will report similar selected val-
ues. The left hand in Figure 1 will not trigger a selection
because Camera 1 would report a different selected value
than Camera 2. This voting algorithm is computationally
trivial and meets our requirement of “no images leave cam-
eras”. False-positives are greatly decreased by using multi-
ple camera perspectives. Conversely, the approximate 85%
accuracy is effectively increased because a false-positive
can only actually occur if similar errant light widget se-
lected values are reported by at least two different perspec-
tives. This simple, multiple camera system is configurable
for diverse environments and inhibits the problem of false-
positives.

��	������������,�	��

As stated before XWeb was chosen because of its cross-
modal capabilities. This cross-modal interaction is made

possible by the ability to subscribe to common data. For
example, instead of just projecting the information back
onto a desktop, as in [17, 14, 15], we can synchronize an
XWeb speech client [9] to a light widget system and the
light widgets can audibly report their changed values. Al-
ternatively, by using XWeb, we could have the information
display in an XWeb view on an available TV. This interac-
tive feedback mechanism notifies the users when their light
widgets have been activated. By using XWeb’s cross-
modal functionality, we amplify the feedback space avail-
able to us.
Since we are using XWeb as our interface between setting
values and light widgets, we need to understand more about
what interactors or predefined widgets, XWeb has, and
also, understand what setup need to be done so that light
widgets can interface with XWeb values.
XWeb has several types of interactors. The atomic interac-
tors that both XWeb and light widgets can manipulate are:
Enumerations, Numbers, Dates and Times. XWeb also has
a Text interactor. However, it is interactively not feasible
to write in a text box using our light widget techniques.
Numbers, Dates and Times are interactors that have inher-
ent ordering, and so we allow slider-type light widgets (lin-
ear and circular light widgets) to control these types of val-
ues. Enumerations, in general, do not have an explicit or-
dering, so Enumerations can only be manipulated by but-
ton-type light widgets.
An XWeb interactor has an XLoc (similar to a URL) that
references the data that the interactor is manipulating. To
integrate light widgets with XWeb, we need to extract the
interactor type and its XLoc from an existing XWeb inter-
face.

�(����'(���� '����

Three light widget type have been implemented: button,
linear and circular light widgets. Button and linear light
widgets are similar to their GUI (Graphical User Interface)
counterparts: buttons and sliders. The circular light widget
is a circular slider. Figure 4 shows the light widget setup
application with an example of each widget type.

+$��������������	�
�

Button light widgets have the same “feel” as GUI buttons.
There are single-value buttons and toggle buttons that have
different on and off values. A single-value button simple
associates a data reference and a value with the light wid-
get’s visual region. When the user touches that region the
data reference is set to the value. This is a simple switch
mechanism. Using three of these light widgets, a radio
group of three items can be constructed in three adjacent
places or on three related objects.

66

A toggle button has a data reference, two values and a vis-
ual region for each camera. Placing one’s hand on the vis-
ual region will toggle the data between two values.
To set up a button light widget a user need only use the
light widget setup application and draw rectangles on the
two camera images where the button light widget should
appear in each image. The user then selects the light widget
and displays its properties. The property edit box is shown
in Figure 5. If this were a newly created button light wid-
get, the URL and XLoc would be empty and the user would
need to provide the link between the light widget and the
desired XWeb interactor.

Figure 5 – Button light widget property edit box

The link between the XWeb atomic value and the light
widget is the most critical property to setup. To provide
this link to an XWeb interactor, the user presses the “Set
the URL and XLoc” button. The user then sees the mes-
sage in Figure 6, which prompts them to go to the XWeb
GUI interface, select an XWeb interactor and then hit OK.
The light widget configuration system then captures the
necessary XWeb information and stores it with the light
widget.

Figure 6 – Instructions for creating an XWeb link

For example, the user could go to a home automation page
in the XWeb GUI and select the radio, as shown in Figure
7.

Figure 7 – XWeb home automation interface

After the user selects the OK button, the button properties
of URL, XLoc, widget index along with default values for
on and off values are set. This link setup is the same for all
light widgets.
These virtual buttons are of great use in an environment.
Power on/off pairs for any electrical device can be created
virtually without rewiring the light switches of a house.
Obviously, since this system uses normal cameras, button
light widgets do not work for room light switches, as it is
impossible for the cameras to detect skin if the room is
completely dark, however, their usefulness for lamps, TVs,
stereos and other electrical devices is unlimited. The ambi-
ent light problem might be overcome with infrared cameras,
much like in the Gesture Pendant [13], which can readily
detect skin. However, we used only normal, visual light
cameras.

Figure 4 — Light Widget Configuration Application

67

��	�������������	�
�

Linear light widgets interact with a range of values. A lin-
ear light widget must have maximum and minimum values.
To manipulate a thermostat, a linear light widget could be
set up to have a minimum value of 60 and maximum value
of 80 and could be placed along the casing of a doorway. A
user could slide his/her hand along the doorway casing until
the desired temperature is set.
The properties edit box is shown below for an existing lin-
ear light widget that manipulates an XWeb thermostat. The
same XWeb link setup as explained for button light widgets
is used to setup the URL and XLoc for the wakeup tempera-
ture on this XWeb thermostat controller. The property edit
box for such a thermostat widget is shown in Figure 8.

Figure 8 – Linear light widget property edit box

Linear light widgets also have granularity. Since linear
light widgets have a range, the value between approximated
selection values is a real value between the maximum and
minimum values. This exactness is often unnecessary and
sometimes completely undesired. By adding a granularity
value, the user can decide how fine or coarse the approxi-
mation should be. In the thermostat example above, the
granularity is set to one, which signifies that the approxima-
tion will be evaluated to every 1 degree. If the granularity
were 2 and the min and max values were still 60 and 80
respectively, the widget would evaluate to one of the even
numbers between 60 and 80 inclusive. Granularity accepts
a real number, so if the granularity were set to 0.5 then the
cameras would approximate selection values to the nearest
half-degree. Granularity is also important in multi-camera
voting. With the infinite granularity two cameras would
rarely report the same value for a given light widget. Using
a more coarse granularity resolves this excessive sensitivity.

"���$&�������������	�
�

Circular light widgets provide round control surfaces simi-
lar to knobs or clock surfaces. One of the problems with a
circular space is defining the angular origin. Circular light
widgets add two properties beyond the linear light widgets
— an initial angle and a direction. For example, Figure 9,
shows a circular light widget from two angles, the initial
and on each is unique, but identifies the starting and stop-
ping point of value allocation around the circle. Each light
widget must also have a direction: clockwise or counter-
clockwise. This model assumes cameras will not have mir-

rored views, direction is assumed to be uniform for both
perspectives.

Figure 9 – Circular light widgets

A practical use for a circular light widget could be to create
a sprinkler start time controller. In Utah, we have been
asked to only water our lawns from 9pm to 9am. By setting
the start angle to the 9 o’clock position on a clock, the cir-
cular light widget is easy and intuitive. A granularity of 15
could be imposed to only allow start times every quarter of
an hour. The property edit box for such a circular light
widget is shown in Figure 10.

�
Figure 10 Circular light widget property edit box

�(����'(���� '���*�����-*��

Our light widget prototype uses USB cameras connected to
a personal computer. The system is relatively low-cost.
Two USB cameras were used in our implementation and
can be purchased for under $100. Connectivity costs are
low, as each camera reports only its ID, the light widget’s
ID and the estimated value for the widget. Each camera
will need a micro-controller to perform the image process-
ing and value approximation, but this is also low-cost as the
processing power required is minimal as the image process-
ing algorithms used are trivial.

"��"�!�����

We have met our goals for ubiquitous interaction using
multiple inexpensive cameras to sense user hand move-
ments. Using these cameras we can create new light wid-
gets simply by drawing them on snapshot images from each
camera. We ensure privacy by having each camera emit
only its votes for light widget values. We resolve multi-
camera integration by simple value voting rather than 3D
geometry. Skin detection is performed by a simple lookup
of quantized hue and saturation values. We believe such a
system can provide interaction anywhere.

68

��.����"���

[1] Abowd, G.D., Atkeson, C.G., Hong, J., Long, S.,
Kooper, R., and Pinkerton M. “Cyberguide: A mobile
context-aware tour guide.” ACM Wireless Networks,
3:421-433, 1997.

[2] Crowley, J.L., Bérard, F., and Coutaz, J. “Finger
Tracking as an Input Device for Augmented Reality.”
IWAGFR ’95: Zurich, Germany (June 1995).

[3] Fitmaurice, G., Ishii, H., and Buxton W. “Bricks: Lay-
ing the Foundations for Graspable User Interfaces.”
Proceedings of CHI '95 (Denver CO, May 1995),
ACM Press, 442-449.

[4] Ghidary, S.S., Nakata, Y., Takamori, T. and Hattori,
M. “Head and Face Detection at Indoor Environment
by Home Robot.” Proceedings of ICEE2000 (Iran,
May 2000).

[5] Heap, A.J. “Real-Time Hand Tracking and Gesture
Recognition Using Smart Snakes.” Interface to Human
and Virtual Worlds: Montpellier, France (June 1995).

[6] Hudson, S.E and Smith, I. “Techniques for Addressing
Fundamental Privacy and Disruption Tradeoffs in
Awareness Support Systems.” Proceedings of the
ACM on Computer Supported Cooperative Work
(Boston MA, November 1996).

[7] Ishii, H. and Ullmer, B. “Tangible Bits: Towards
Seamless Interfaces between People, Bits and Atoms.”
Proceedings of CHI '97 (Los Angeles CA, April 1997),
ACM Press, 234-241.

[8] Koller, D., Klinker, G., Rose, E., Breen, D. Whitaker,
R and Tuceryan M. “Real-time Vision-based Camera
Tracking for Augmented Reality Applications.” Pro-
ceedings of the Symposium on Virtual Reality Software
and Technology (VRST-97), Lusanne, Switzerland,
Sept 1997, 87-94.

[9] Olsen, D.R., Jeffries, S., Nielsen, T., Moyes, W. and
Frederickson, P. “Cross modal Interaction using
Xweb.” Proceedings of UIST ’00 (San Diego CA, No-
vember 2000).

[10] Olsen, D.R. “Interacting in Chaos.” Interactions, Sept
1999.

[11] Rekimoto, J. and Katashi Nagao. “The World through
the Computer: Computer Augmented Interaction with
Real World Environments.” Proceedings of UIST ‘95
(Pittsburgh PA, November 1995), 29-38.

[12] Schilit, B.N., Adams, N. and Want, R. “Context-
Aware Computing Applications.” In Proceedings
Workshop on Mobile Computing Systems and Applica-
tions. IEEE, December 1994.

[13] Starner, T., Auxier, J. and Ashbrook D. “The Gesture
Pendant: A Self-illuminating, Wearable, Infrared Com-
puter Vision System for Home Automation Control and
Medical Monitoring.” International Symposium on
Wearable Computing (Atlanta GA, October 2000).

[14] Underkoffler, J., Ullmer, B. and Ishii, H. “Emancipated
Pixels: Real-World Graphics in the Luminous Room.”
Proceeding of SIGGRAPH ’99 (Los Angeles CA,
1999), ACM Press, 385-392.

[15] Underkoffler, J. and Ishii H. “Illuminating Light: An
Optical Design Tool with a Luminous-Tangible Inter-
face.” Proceedings of CHI ’98 (Los Angeles CA,
April 1998).

[16] Want, R., Schilit, B., Adams, N., Gold, R., Petersen,
K., Goldberg, D., Ellis, J., and Weiser, M. “The Parc-
Tab Ubiquitous Computing Experiment.” Xerox Parc
technical report. http://citeseer.nj.nec.com/535.html

[17] Wellner, P. “Interacting with paper on the Digi-
talDesk.” Communications of the ACM, 36(7):86-96,
July 1993.

[18] Wisneski, C., Ishii, H., Bahley, A., Gorbet, M., Braver,
S., Ullmer, B. and Yarin P. “Ambient Displays: Turn-
ing Architectural Space into an Interface between Peo-
ple and Digital Information.” Springer Verlag, Feb 25-
26 (1998).

[19] Yang, M.H. and Ahuja, N. “Gaussian Mixture Model
for Human Skin Color and Its Application in Image
and Video Databases.” Proceedings of SPIE ’99 (San
Jose CA, Jan 1999), 458-466.

[20] Zarit, B.D., Super, B.J. and Quek, F.K.H. “Compari-
son of Five Color Models in Skin Pixel Classification.”
ICCV ’99 International Workshop on Recognition,
Analysis, and Tracking of Faces and Gestures in Real-
Time Systems (RATFG-RTS ’99), Corfu, Greece, Sept
26-27 (1999), 58-63.

69

