

Interactive Machine Learning

Jerry Alan Fails, Dan R. Olsen, Jr.
Computer Science Department

Brigham Young University
Provo, Utah 84602

{failsj, olsen}@cs.byu.edu

ABSTRACT
Perceptual user interfaces (PUIs) are an important part of
ubiquitous computing. Creating such interfaces is difficult
because of the image and signal processing knowledge
required for creating classifiers. We propose an interactive
machine-learning (IML) model that allows users to train,
classify/view and correct the classifications. The concept and
implementation details of IML are discussed and contrasted
with classical machine learning models. Evaluations of two
algorithms are also presented. We also briefly describe
Image Processing with Crayons (Crayons), which is a tool for
creating new camera-based interfaces using a simple painting
metaphor. The Crayons tool embodies our notions of
interactive machine learning.

Categories: H.5.2, D.2.2
General Terms: Design, Experimentation
Keywords: Machine learning, perceptive user interfaces,
interaction, image processing, classification

INTRODUCTION
Perceptual user interfaces (PUIs) are establishing the need for
machine learning in interactive settings. PUIs like
VideoPlace [8], Light Widgets [3], and Light Table [15,16]
all use cameras as their perceptive medium. Other systems
use sensors other than cameras such as depth scanners and
infrared sensors [13,14,15]. All of these PUIs require
machine learning and computer vision techniques to create
some sort of a classifier. This classification component of the
UI often demands great effort and expense. Because most
developers have little knowledge on how to implement
recognition in their UIs this becomes problematic. Even
those who do have this knowledge would benefit if the
classifier building expense were lessened. We suggest the
way to decrease this expense is through the use of a visual
image classifier generator, which would allow developers to
add intelligence to interfaces without forcing additional
programming. Similar to how Visual Basic allows simple
and fast development, this tool would allow for fast
integration of recognition or perception into a UI.

Implementation of such a tool, however, poses many
problems. First and foremost is the problem of rapidly
creating a satisfactory classifier. The simple solution is to
using behind-the-scenes machine learning and image
processing.
Machine learning allows automatic creation of classifiers,
however, the classical models are generally slow to train, and
not interactive. The classical machine-learning (CML) model
is summarized in Figure 1. Prior to the training of the
classifier, features need to be selected. Training is then
performed “off-line” so that classification can be done
quickly and efficiently. In this model classification is
optimized at the expense of longer training time. Generally,
the classifier will run quickly so it can be done real-time. The
assumption is that training will be performed only once and
need not be interactive. Many machine-learning algorithms
are very sensitive to feature selection and suffer greatly if
there are very many features.

Feature
Selection

Train Classify

Interactive Use

Figure 1 – Classical machine learning model

With CML, it is infeasible to create an interactive tool to
create classifiers. CML requires the user to choose the
features and wait an extended amount of time for the
algorithm to train. The selection of features is very
problematic for most interface designers. If one is designing
an interactive technique involving laser spot tracking, most
designers understand that the spot is generally red. They are
not prepared to deal with how to sort out this spot from red
clothing, camera noise or a variety of other problems. There
are well-known image processing features for handling these
problems, but very few interface designers would know how
to carefully select them in a way that the machine learning
algorithms could handle.
The current approach requires too much technical knowledge
on the part of the interface designer. What we would like to
do is replace the classical machine-learning model with the
interactive model shown in Figure 2. This interactive training
allows the classifier to be coached along until the desired
results are met. In this model the designer is correcting and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
IUI’03, January 12–15, 2003, Miami, Florida, USA.
Copyright 2003 ACM 1-58113-586-6/03/0001…$5.00.

39

teaching the classifier and the classifier must perform the
appropriate feature selection.

Feature
Selection

Train Classify

Interactive Use

Feedback To
Designer

Manual
Correction

Figure 2 – Interactive machine learning (IML) model

The pre-selection of features can be eliminated and
transferred to the learning part of the IML if the learning
algorithm used performs feature selection. This means that a
large repository of features are initially calculated and fed to
the learning algorithm so it can learn the best features for the
classification problem at hand. The idea is to feed a very
large number of features into the classifier training and let the
classifier do the filtering rather than the human. The human
designer then is focused on rapidly creating training data that
will correct the errors of the classifier.
In classical machine learning, algorithms are evaluated on
their inductive power. That is, how well the algorithm will
perform on new data based on the extrapolations made on the
training data. Good inductive power requires careful analysis
and a great deal of computing time. This time is frequently
exponential in the number of features to be considered. We
believe that using the IML model a simple visual tool can be
designed to build classifiers quickly. We hypothesize that
when using the IML, having a very fast training algorithm is
more important than strong induction. In place of careful
analysis of many feature combinations we provide much
more human input to correct errors as they appear. This
allows the interactive cycle to be iterated quickly so it can be
done more frequently.
The remainder of the paper is as follows. The next section
briefly discusses the visual tool we created using the IML
model, called Image Processing with Crayons (Crayons).
This is done to show one application of the IML model’s
power and versatility. Following the explanation of Crayons,
we explore the details of the IML model by examining its
distinction from CML, the problems it must overcome, and its
implementation details. Finally we present some results from
some tests between two of the implemented machine learning
algorithms. From these results we base some preliminary
conclusions of IML as it relates to Crayons.

IMAGE PROCESSING WITH CRAYONS
Crayons is a system we created that uses IML to create image
classifiers. Crayons is intended to aid UI designers who do
not have detailed knowledge of image processing and

machine learning. It is also intended to accelerate the efforts
of more knowledgeable programmers.
There are two primary goals for the Crayons tool: 1) to allow
the user to create an image/pixel classifier quickly, and 2) to
allow the user to focus on the classification problem rather
than image processing or algorithms. Crayons is successful if
it takes minutes rather than weeks or months to create an
effective classifier. For simplicity sake, we will refer to this
as the UI principle of fast and focused. This principle refers
to enabling the designer to quickly accomplish his/her task
while remaining focused solely on that task.
Figure 3 shows the Crayons design process. Images are input
into the Crayons system, which can then export the generated
classifier. It is assumed the user has already taken digital
pictures and saved them as files to import into the system, or
that a camera is set up on the machine running Crayons, so it
can capture images from it. Exporting the classifier is equally
trivial, since our implementation is written in Java. The
classifier object is simply serialized and output to a file using
the standard Java mechanisms.

Figure 3 – Classifier Design Process

An overview of the internal architecture of Crayons is shown
in Figure 4. Crayons receives images upon which the user
does some manual classification, a classifier is created, then
feedback is displayed. The user can then refine the classifier
by adding more manual classification or, if the classifier is
satisfactory, the user can export the classifier. The internal
loop shown in Figure 4 directly correlates to the
aforementioned train, feedback, correct cycle of the IML (see
Figure 2). To accomplish the fast and focused UI principle,
this loop must be easy and quick to cycle through. To be
interactive the training part of the loop must take less than
five seconds and generally much faster. The cycle can be
broken down into two components: the UI and the Classifier.
The UI component needs to be simple so the user can remain
focused on the classification problem at hand. The classifier
creation needs to be fast and efficient so the user gets
feedback as quickly as possible, so they are not distracted
from the classification problem.

Figure 4 – The classification design loop

40

Although the IML and the machine-learning component of
Crayons are the primary discussion of this paper it is notable
to mention that Crayons has profited from work done by
Viola and Jones [19] and Jaimes and Chang [5,6,7]. Also a
brief example of how Crayons can be used is illustrative. The
sequence of images in Figure 5 shows the process of creating
a classifier using Crayons.

Figure 5 – Crayons interaction process

Figure 5 illustrates how the user initially paints very little
data, views the feedback provided by the resulting classifier,
corrects by painting additional class pixels and then iterates
through the cycle. As seen in the first image pair in Figure 5,
only a little data can generate a classifier that roughly learns
skin and background. The classifier, however, over-
generalizes in favor of background; therefore, in the second
image pair you can see skin has been painted where the
classifier previously did poorly at classifying skin. The
resulting classifier shown on the right of the second image
pair shows the new classifier classifying most of the skin on
the hand, but also classifying some of the background as skin.
The classifier is corrected again, and the resulting classifier is
shown as the third image pair in the sequence. Thus, in only
a few iterations, a skin classifier is created.
The simplicity of the example above shows the power that
Crayons has due to the effectiveness of the IML model. The
key issue in the creation of such a tool lies in quickly

generating effective classifiers so the interactive design loop
can be utilized.

MACHINE LEARNING
For the IML model to function, the classifier must be
generated quickly and be able to generalize well. As such we
will first discuss the distinctions between IML and CML,
followed by the problems IML must overcome because of its
interactive setting, and lastly its implementation details
including specific algorithms.

CML vs. IML
Classical machine learning generally has the following
assumptions.

• There are relatively few carefully chosen features,
• There is limited training data,
• The classifier must amplify that limited training data

into excellent performance on new training data,
• Time to train the classifier is relatively unimportant as

long as it does not take too many days.
None of these assumptions hold in our interactive situation.
Our UI designers have no idea what features will be
appropriate. In fact, we are trying to insulate them from
knowing such things. In our current Crayons prototype there
are more than 150 features per pixel. To reach the breadth of
application that we desire for Crayons we project over 1,000
features will be necessary. The additional features will handle
texture, shape and motion over time. For any given problem
somewhere between three and fifteen of those features will
actually be used, but the classifier algorithm must
automatically make this selection. The classifier we choose
must therefore be able to accommodate such a large number
of features, and/or select only the best features.
In Crayons, when a designer begins to paint classes on an
image a very large number of training examples is quickly
generated. With 77K pixels per image and 20 images one
can rapidly generate over a million training examples. In
practice, the number stays in the 100K examples range
because designers only paint pixels that they need to correct
rather than all pixels in the image. What this means,
however, is that designers can generate a huge amount of
training data very quickly. CML generally focuses on the
ability of a classifier to predict correct behavior on new data.
In IML, however, if the classifier’s predictions for new data
are wrong, the designer can rapidly make those corrections.
By rapid feedback and correction the classifier is quickly (in
a matter of minutes) focused onto the desired behavior. The
goal of the classifier is not to predict the designer’s intent into
new situations but rapidly reflect intent as expressed in
concrete examples.
Because additional training examples can be added so
readily, IML’s bias differs greatly from that of CML.
Because it extrapolates a little data to create a classifier that
will be frequently used in the future, CML is very concerned
about overfit. Overfit is where the trained classifier adheres

41

too closely to the training data rather than deducing general
principles. Cross-validation and other measures are generally
taken to minimize overfit. These measures add substantially
to the training time for CML algorithms. IML’s bias is to
include the human in the loop by facilitating rapid correction
of mistakes. Overfit can easily occur, but it is also readily
perceived by the designer and instantly corrected by the
addition of new training data in exactly the areas that are most
problematic. This is shown clearly in Figure 5 where a
designer rapidly provides new data in the edges of the hand
where the generalization failed.
Our interactive classification loop requires that the classifier
training be very fast. To be effective, the classifier must be
generated from the training examples in under five seconds.
If the classifier takes minutes or hours, the process of ‘train-
feedback-correct’ is no longer interactive, and much less
effective as a design tool. Training on 100,000 examples
with 150 features each in less than five seconds is a serious
challenge for most CML algorithms.
Lastly, for this tool to be viable the final classifier will need
to be able to classify 320 x 240 images in less than a fourth of
a second. If the resulting classifier is much slower than this it
becomes impossible to use it to track interactive behavior in a
meaningful way.

IML Implementation
Throughout our discussion thus far, many requirements for
the machine-learning algorithm in IML have been made. The
machine-learning algorithm must:

• learn/train very quickly,
• accommodate 100s to 1000s of features,
• perform feature selection,
• allow for tens to hundreds of thousands of training

examples.
These requirements put firm bounds on what kind of a
learning algorithm can be used in IML. They invoke the
fundamental question of which machine-learning algorithm
fits all of these criteria. We discuss several options and the
reason why they are not viable before we settle on our
algorithm of choice: decision trees (DT).
Neural Networks [12] are a powerful and often used
machine-learning algorithm. They can provably approximate
any function in two layers. Their strength lies in their
abilities to intelligently integrate a variety of features. Neural
networks also produce relatively small and efficient
classifiers, however, there are not feasible in IML. The
number of features used in systems like Crayons along with
the number of hidden nodes required to produce the kinds of
classifications that are necessary completely overpowers this
algorithm. Even more debilitating is the training time for
neural networks. The time this algorithm takes to converge is
far to long for interactive use. For 150 features this can take
hours or days.

The nearest-neighbor algorithm [1] is easy to train but not
very effective. Besides not being able to discriminate
amongst features, nearest-neighbor has serious problems in
high dimensional feature spaces of the kind needed in IML
and Crayons. Nearest-neighbor generally has a classification
time that is linear in the number of training examples which
also makes it unacceptably slow.
There are yet other algorithms such as boosting that do well
with feature selection, which is a desirable characteristic.
While boosting has shown itself to be very effective on tasks
such as face tracing [18], its lengthy training time is
prohibitive for interactive use in Crayons.
There are many more machine-learning algorithms, however,
this discussion is sufficient to preface to our decision of the
use of decision trees. All the algorithms discussed above
suffer from the curse of dimensionality. When many features
are used (100s to 1000s), their creation and execution times
dramatically increase. In addition, the number of training
examples required to adequately cover such high dimensional
feature spaces would far exceed what designers can produce.
With just one decision per feature the size of the example set
must approach 2100, which is completely unacceptable. We
need a classifier that rapidly discards features and focuses on
the 1-10 features that characterize a particular problem.
Decision trees [10] have many appealing properties that
coincide with the requirements of IML. First and foremost is
that the DT algorithm is fundamentally a process of feature
selection. The algorithm operates by examining each feature
and selecting a decision point for dividing the range of that
feature. It then computes the “impurity” of the result of
dividing the training examples at that decision point. One can
think of impurity as measuring the amount of confusion in a
given set. A set of examples that all belong to one class
would be pure (zero impurity). There are a variety of
possible impurity measures [2]. The feature whose partition
yields the least impurity is the one chosen, the set is divided
and the algorithm applied recursively to the divided subsets.
Features that do not provide discrimination between classes
are quickly discarded. The simplicity of DTs also provides
many implementation advantages in terms of speed and space
of the resulting classifier.
Quinlan’s original DT algorithm [10] worked only on
features that were discrete (a small number of choices). Our
image features do not have that property. Most of our
features are continuous real values. Many extensions of the
original DT algorithm, ID3, have been made to allow use of
real–valued data [4,11]. All of these algorithms either
discretize the data or by selecting a threshold T for a given
feature F divide the training examples into two sets where
F<T and F>=T. The trick is for each feature to select a value
T that gives the lowest impurity (best classification
improvement). The selection of T from a large number of
features and a large number of training examples is very slow
to do correctly.

42

We have implemented two algorithms, which employ
different division techniques. These two algorithms also
represent the two approaches of longer training time with
better generalization vs. shorter training time with poorer
generalization. The first strategy slightly reduces interactivity
and relies more on learning performance. The second relies
on speed and interactivity. The two strategies are Center
Weighted (CW) and Mean Split (MS).
Our first DT attempt was to order all of the training examples
for each feature and step through all of the examples
calculating the impurity as if the division was between each
of the examples. This yielded a minimum impurity split,
however, this generally provided a best split close to the
beginning or end of the list of examples, still leaving a large
number of examples in one of the divisions. Divisions of this
nature yield deeper and more unbalanced trees, which
correlate to slower classification times. To improve this
algorithm, we developed Center Weighted (CW), which does
the same as above, except that it more heavily weights central
splits (more equal divisions). By insuring that the split
threshold is generally in the middle of the feature range, the
resulting tree tends to be more balanced and the sizes of the
training sets to be examined at each level of the tree drops
exponentially.
CW DTs do, however, suffer from an initial sort of all
training examples for each feature, resulting in a O(f * N log
N) cost up front, where f is the number of features and N the
number of training examples. Since in IML, we assume that
both f and N are large, this can be extremely costly.
Because of the extreme initial cost of sorting all N training
examples f times, we have extended Center Weighted with
CWSS. The ‘SS’ stand for sub-sampled. Since the iteration
through training examples is purely to find a good split, we
can sample the examples to find a statistically sound split.
For example, say N is 100,000, if we sample 1,000 of the
original N, sort those and calculate the best split then our
initial sort is 100 times faster. It is obvious that a better
threshold could be computed using all of the training data, but
this is mitigated by the fact that those data items will still be
considered in lower levels of the tree. When a split decision
is made, all of the training examples are split, not just the sub-
sample. The sub-sampling means that each node’s split
decision is never greater than O(f*1000*5), but that
eventually all training data will be considered.
Quinlan used a sampling technique called “windowing”.
Windowing initially used a small sample of training examples
and increased the number of training examples used to create
the DT, until all of the original examples were classified
correctly [11]. Our technique, although similar, differs in that
the number of samples is fixed. At each node in the DT a
new sample of fixed size is drawn, allowing misclassified
examples in a higher level of the DT to be considered at a
lower level.

The use of sub-sampling in CWSS produced very slight
differences in classification accuracy as compared to CW, but
reduced training time by a factor of at least two (for training
sets with N ≥ 5,000). This factor however will continue to
grow as N increases. (For N = 40,000 CWSS is
approximately 5 times faster than CW; 8 for N = 80,000.)
The CW and CWSS algorithms spend considerable
computing resources in trying to choose a threshold value for
each feature. The Mean Split (MS) algorithm spends very
little time on such decisions and relies on large amounts of
training data to correct decisions at lower levels of the tree.
The MS algorithm uses T=mean(F) as the threshold for
dividing each feature F and compares the impurities of the
divisions of all features. This is very efficient and produces
relatively shallow decision trees by generally dividing the
training set in half at each decision point. Mean split,
however, does not ensure that the division will necessarily
divide the examples at points that are meaningful to correct
classification. Successive splits at lower levels of the tree
will eventually correctly classify the training data, but may
not generalize as well.
The resulting MS decision trees are not as good as those
produced by more careful means such as CW or CWSS.
However, we hypothesized, that the speedup in classification
would improve interactivity and thus reduce the time for
designers to train a classifier. We believe designers make up
for the lower quality of the decision tree with the ability to
correct more rapidly. The key is in optimizing designer
judgment rather than classifier predictions. MSSS is a sub-
sampled version of MS in the same manner as CWSS. In
MSSS, since we just evaluate the impurity at the mean, and
since the mean is a simple statistical value, the resulting
divisions are generally identical to those of straight MS.
As a parenthetical note, another important bottleneck that is
common to all of the classifiers is the necessity to calculate
all features initially to create the classifier. We made the
assumption in IML that all features are pre-calculated and
that the learning part will find the distinguishing features.
Although, this can be optimized so it is faster, all algorithms
will suffer from this bottleneck.
There are many differences between the performances of
each of the algorithms. The most important is that the CW
algorithms train slower than the MS algorithms, but tend to
create better classifiers. Other differences are of note though.
For example, the sub sampled versions, CWSS and MSSS,
generally allowed the classifiers to be generated faster. More
specifically, CWSS was usually twice as fast as CW, as was
MSSS compared to MS.
Because of the gains in speed and lack of loss of
classification power, only CWSS and MSSS will be used for
comparisons. The critical comparison is to see which
algorithm allows the user to create a satisfactory classifier the
fastest. User tests comparing these algorithms are outlined
and presented in the next section.

43

EVALUATIONS
User tests were conducted to evaluate the differences between
CWSS and MSSS. When creating a new perceptual interface
it is not classification time that is the real issue. The
important issue is designer time. As stated before,
classification creation time for CWSS is longer than MSSS,
but the center-weighted algorithms tend to generalize better
than the mean split algorithms. The CWSS generally takes 1-
10 seconds to train on training sets of 10,000-60,000
examples, while MSSS is approximately twice as fast on the
same training sets. These differences are important; as our
hypothesis was that faster classifier creation times can
overcome poorer inductive strength and thus reduce overall
designer time.
To test the difference between CWSS and MSSS we used
three key measurements: wall clock time to create the
classifier, number of classify/correct iterations, and structure
of the resulting tree (depth and number of nodes). The latter
of these three corresponds to the amount of time the classifier
takes to classify an image in actual usage.
In order to test the amount of time a designer takes to create a
good classifier, we need a standard to define “good
classifier”. A “gold standard” was created for four different
classification problems: skin-detection, paper card tracking,
robot car tracking and laser tracking. These gold standards
were created by carefully classifying pixels until, in human
judgment, the best possible classification was being
performed on the test images for each problem. The resulting
classifier was then saved as a standard.
Ten total test subjects were used and divided into two groups.
The first five did each task using the CWSS followed by the
MSSS and the remaining five MSSS followed by CWSS.
The users were given each of the problems in turn and asked
to build a classifier. Each time the subject requested a
classifier to be built that classifier’s performance was
measured against the performance of the standard classifier
for that task. When the subject’s classifier agreed with the
standard on more than 97.5% of the pixels, the test was
declared complete.
Table 1, shows the average times and iterations for the first
group, Table 2, the second group.

 CWSS MSSS
Problem Time Iterations Time Iterations

Skin 03:06 4.4 10:35 12.6
Paper Cards 02:29 4.2 02:23 5.0
Robot Car 00:50 1.6 01:00 1.6
Laser 00:46 1.2 00:52 1.4

Table 1 – CWSS followed by MSSS

 MSSS CWSS
Problem Time Iterations Time Iterations

Skin 10:26 11.4 03:51 3.6
Paper Cards 04:02 5.0 02:37 2.6
Robot Car 01:48 1.2 01:37 1.2
Laser 01:29 1.0 01:16 1.0

Table 2 – MSSS followed by CWSS
The laser tracker is a relatively simple classifier because of
the uniqueness of bright red spots [9]. The robot car was
contrasted with a uniform colored carpet and was similarly
straightforward. Identifying colored paper cards against a
cluttered background was more difficult because of the
diversity of the background. The skin tracker is the hardest
because of the diversity of skin color, camera over-saturation
problems and cluttered background [20].
As can be seen in tables 1 and 2, MSSS takes substantially
more designer effort on the hard problems than CWSS. All
subjects specifically stated that CWSS was “faster” than
MSSS especially in the Skin case. (Some did not notice a
difference between the two algorithms while working on the
other problems.) We did not test any of the slower
algorithms such as neural nets or nearest-neighbor.
Interactively these are so poor that the results are self-evident.
We also did not test the full CW algorithm. Its classification
times tend into minutes and clearly could not compete with
the times shown in tables 1 and 2. It is clear from our
evaluations that a classification algorithm must get under the
10-20 second barrier in producing a new classification, but
that once under that barrier, the designer’s time begins to
dominate. Once the designer’s time begins to dominate the
total time, then the classifier with better generalization wins.
We also mentioned the importance of the tree structure as it
relates to the classification time of an image. Table 3 shows
the average tree structures (tree depth and number of nodes)
as well as the average classification time (ACT) in
milliseconds over the set of test images.

 CWSS MSSS
Problem Depth Nodes ACT Depth Nodes ACT

Skin 16.20 577 243 25.60 12530 375
Paper
Cards 15.10 1661 201 16.20 2389 329

Car 13.60 1689 235 15.70 2859 317
Laser 13.00 4860 110 8.20 513 171

Table 3 – Tree structures and average classify time (ACT)
As seen in Table 3, depth, number of nodes and ACT, were
all lower in CWSS than in MSSS. This was predicted as
CWSS provides better divisions between the training
examples.

44

While testing we observed that those who used the MSSS
which is fast but less accurate, first, ended up using more
training data, even when they used the CWSS, which usually
generalizes better and needs less data. Those who used the
CWSS first, were pleased with the interactivity of CWSS and
became very frustrated when they used MSSS, even though it
could cycle faster through the interactive loop. In actuality,
because of the poor generalization of the mean split
algorithm, even though the classifier generation time for
MSSS was quicker than CWSS, the users felt it necessary to
paint more using the MSSS, so the overall time increased
using MSSS.

CONCLUSION
When using machine learning in an interactive design setting,
feature selection must be automatic rather than manual and
classifier training-time must be relatively fast. Decision Trees
using a sub-sampling technique to improve training times are
very effective for both of these purposes. Once interactive
speeds are achieved, however, the quality of the classifier’s
generalization becomes important. Using tools like Crayons,
demonstrates that machine learning can form an appropriate
basis for the design tools needed to create new perceptual
user interfaces.

REFERENCES
1. Cover, T., and Hart, P. “Nearest Neighbor Pattern

Classification.” IEEE Transactions on Information
Theory, 13, (1967) 21-27.

2. Duda, R. O., Hart, P. E., and Stork, D. G., Pattern
Classification. (2001).

3. Fails, J.A., Olsen, D.R. “LightWidgets: Interacting in
Everyday Spaces.” Proceedings of IUI ’02 (San
Francisco CA, January 2002).

4. Fayyad, U.M. and Irani, K. B. “On the Handling of
Continuous-valued Attributes in Decision Tree
Generation.” Machine Learning, 8, 87-102,(1992).

5. Jaimes, A. and Chang, S.-F. “A Conceptual Framework
for Indexing Visual Information at Multiple Levels.”
IS&T/SPIE Internet Imaging 2000, (San Jose CA,
January 2000).

6. Jaimes, A. and Chang, S.-F. “Automatic Selection of
Visual Features and Classifier.” Storage and Retrieval
for Image and Video Databases VIII, IS&T/SPIE (San
Jose CA, January 2000).

7. Jaimes, A. and Chang, S.-F. “Integrating Multiple
Classifiers in Visual Object Detectors Learned from User
Input.” Invited paper, session on Image and Video

Databases, 4th Asian Conference on Computer Vision
(ACCV 2000), Taipei, Taiwan, January 8-11, 2000.

8. Krueger, M. W., Gionfriddo. T., and Hinrichsen, K.,
“VIDEOPLACE -- an artificial reality”. Human Factors
in Computing Systems, CHI '85 Conference Proceedings,
ACM Press, 1985, 35-40.

9. Olsen, D.R., Nielsen, T. “Laser Pointer Interaction.”
Proceedings of CHI ’01 (Seattle WA, March 2001).

10. Quinlan, J. R. “Induction of Decision Trees.” Machine
Learning, 1(1); 81-106, (1986).

11. Quinlan, J. R. “C4.5: Programs for machine learning.”
Morgan Kaufmann, San Mateo, CA, 1993.

12. Rumelhart, D., Widrow, B., and Lehr, M. “The Basic
Ideas in Neural Networks.” Communications of the ACM,
37(3), (1994), pp 87-92.

13. Schmidt, A. “Implicit Human Computer Interaction
Through Context.” Personal Technologies, Vol 4(2),
June 2000.

14. Starner, T., Auxier, J. and Ashbrook, D. “The Gesture
Pendant: A Self-illuminating, Wearable, Infrared
Computer Vision System for Home Automation Control
and Medical Monitoring.” International Symposium on
Wearable Computing (Atlanta GA, October 2000).

15. Triggs, B. “Model-based Sonar Localisation for Mobile
Robots.” Intelligent Robotic Systems ’93, Zakopane,
Poland, 1993.

16. Underkoffler, J. and Ishii H. “Illuminating Light: An
Optical Design Tool with a Luminous-Tangible
Interface.” Proceedings of CHI ’98 (Los Angeles CA,
April 1998).

17. Underkoffler, J., Ullmer, B. and Ishii, H. “Emancipated
Pixels: Real-World Graphics in the Luminous Room.”
Proceedings of SIGGRAPH ’99 (Los Angeles CA, 1999),
ACM Press, 385-392.

18. Vailaya, A., Zhong, Y., and Jain, A. K. “A hierarchical
system for efficient image retrieval.” In Proc. Int. Conf.
on Patt. Recog. (August 1996).

19. Viola, P. and Jones, M. “Robust real-time object
detection.” Technical Report 2001/01, Compaq CRL,
February 2001.

20. Yang, M.H. and Ahuja, N. “Gaussian Mixture Model for
Human Skin Color and Its Application in Image and
Video Databases.” Proceedings of SPIE ’99 (San Jose
CA, Jan 1999), 458-466.

45

	ABSTRACT
	Categories: H.5.2, D.2.2
	General Terms: Design, Experimentation
	Keywords: Machine learning, perceptive user interfaces, interaction, image processing, classification

	INTRODUCTION
	IMAGE PROCESSING WITH CRAYONS
	MACHINE LEARNING
	CML vs. IML
	IML Implementation

	EVALUATIONS
	
	
	
	CWSS
	Problem

	MSSS
	Problem
	Problem

	CONCLUSION
	REFERENCES

