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ABSTRACT 
Perceptual user interfaces (PUIs) are an important part of 
ubiquitous computing.  Creating such interfaces is difficult 
because of the image and signal processing knowledge 
required for creating classifiers.  We propose an interactive 
machine-learning (IML) model that allows users to train, 
classify/view and correct the classifications.  The concept and 
implementation details of IML are discussed and contrasted 
with classical machine learning models.  Evaluations of two 
algorithms are also presented.  We also briefly describe 
Image Processing with Crayons (Crayons), which is a tool for 
creating new camera-based interfaces using a simple painting 
metaphor.  The Crayons tool embodies our notions of 
interactive machine learning. 

Categories: H.5.2, D.2.2 
General Terms: Design, Experimentation 
Keywords: Machine learning, perceptive user interfaces, 
interaction, image processing, classification 

INTRODUCTION 
Perceptual user interfaces (PUIs) are establishing the need for 
machine learning in interactive settings.  PUIs like 
VideoPlace [8], Light Widgets [3], and Light Table [15,16] 
all use cameras as their perceptive medium.  Other systems 
use sensors other than cameras such as depth scanners and 
infrared sensors [13,14,15].  All of these PUIs require 
machine learning and computer vision techniques to create 
some sort of a classifier.  This classification component of the 
UI often demands great effort and expense.  Because most 
developers have little knowledge on how to implement 
recognition in their UIs this becomes problematic.  Even 
those who do have this knowledge would benefit if the 
classifier building expense were lessened.  We suggest the 
way to decrease this expense is through the use of a visual 
image classifier generator, which would allow developers to 
add intelligence to interfaces without forcing additional 
programming.  Similar to how Visual Basic allows simple 
and fast development, this tool would allow for fast 
integration of recognition or perception into a UI.  

Implementation of such a tool, however, poses many 
problems.  First and foremost is the problem of rapidly 
creating a satisfactory classifier.  The simple solution is to 
using behind-the-scenes machine learning and image 
processing. 
Machine learning allows automatic creation of classifiers, 
however, the classical models are generally slow to train, and 
not interactive.  The classical machine-learning (CML) model 
is summarized in Figure 1.  Prior to the training of the 
classifier, features need to be selected.  Training is then 
performed “off-line” so that classification can be done 
quickly and efficiently.  In this model classification is 
optimized at the expense of longer training time.  Generally, 
the classifier will run quickly so it can be done real-time.  The 
assumption is that training will be performed only once and 
need not be interactive.  Many machine-learning algorithms 
are very sensitive to feature selection and suffer greatly if 
there are very many features. 
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Figure 1 – Classical machine learning model 

With CML, it is infeasible to create an interactive tool to 
create classifiers.  CML requires the user to choose the 
features and wait an extended amount of time for the 
algorithm to train.  The selection of features is very 
problematic for most interface designers.  If one is designing 
an interactive technique involving laser spot tracking, most 
designers understand that the spot is generally red.  They are 
not prepared to deal with how to sort out this spot from red 
clothing, camera noise or a variety of other problems.  There 
are well-known image processing features for handling these 
problems, but very few interface designers would know how 
to carefully select them in a way that the machine learning 
algorithms could handle.  
The current approach requires too much technical knowledge 
on the part of the interface designer.  What we would like to 
do is replace the classical machine-learning model with the 
interactive model shown in Figure 2.  This interactive training 
allows the classifier to be coached along until the desired 
results are met.  In this model the designer is correcting and 
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teaching the classifier and the classifier must perform the 
appropriate feature selection.  
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Figure 2 – Interactive machine learning (IML) model 

The pre-selection of features can be eliminated and 
transferred to the learning part of the IML if the learning 
algorithm used performs feature selection.  This means that a 
large repository of features are initially calculated and fed to 
the learning algorithm so it can learn the best features for the 
classification problem at hand.  The idea is to feed a very 
large number of features into the classifier training and let the 
classifier do the filtering rather than the human.  The human 
designer then is focused on rapidly creating training data that 
will correct the errors of the classifier. 
In classical machine learning, algorithms are evaluated on 
their inductive power.  That is, how well the algorithm will 
perform on new data based on the extrapolations made on the 
training data.  Good inductive power requires careful analysis 
and a great deal of computing time.  This time is frequently 
exponential in the number of features to be considered.  We 
believe that using the IML model a simple visual tool can be 
designed to build classifiers quickly.  We hypothesize that 
when using the IML, having a very fast training algorithm is 
more important than strong induction.  In place of careful 
analysis of many feature combinations we provide much 
more human input to correct errors as they appear.  This 
allows the interactive cycle to be iterated quickly so it can be 
done more frequently. 
The remainder of the paper is as follows.  The next section 
briefly discusses the visual tool we created using the IML 
model, called Image Processing with Crayons (Crayons).  
This is done to show one application of the IML model’s 
power and versatility.  Following the explanation of Crayons, 
we explore the details of the IML model by examining its 
distinction from CML, the problems it must overcome, and its 
implementation details.  Finally we present some results from 
some tests between two of the implemented machine learning 
algorithms.  From these results we base some preliminary 
conclusions of IML as it relates to Crayons. 

IMAGE PROCESSING WITH CRAYONS 
Crayons is a system we created that uses IML to create image 
classifiers.  Crayons is intended to aid UI designers who do 
not have detailed knowledge of image processing and 

machine learning.  It is also intended to accelerate the efforts 
of more knowledgeable programmers. 
There are two primary goals for the Crayons tool: 1) to allow 
the user to create an image/pixel classifier quickly, and 2) to 
allow the user to focus on the classification problem rather 
than image processing or algorithms.  Crayons is successful if 
it takes minutes rather than weeks or months to create an 
effective classifier.  For simplicity sake, we will refer to this 
as the UI principle of fast and focused.  This principle refers 
to enabling the designer to quickly accomplish his/her task 
while remaining focused solely on that task. 
Figure 3 shows the Crayons design process.  Images are input 
into the Crayons system, which can then export the generated 
classifier.  It is assumed the user has already taken digital 
pictures and saved them as files to import into the system, or 
that a camera is set up on the machine running Crayons, so it 
can capture images from it.  Exporting the classifier is equally 
trivial, since our implementation is written in Java.  The 
classifier object is simply serialized and output to a file using 
the standard Java mechanisms. 

 
Figure 3 – Classifier Design Process 

An overview of the internal architecture of Crayons is shown 
in Figure 4.  Crayons receives images upon which the user 
does some manual classification, a classifier is created, then 
feedback is displayed. The user can then refine the classifier 
by adding more manual classification or, if the classifier is 
satisfactory, the user can export the classifier.  The internal 
loop shown in Figure 4 directly correlates to the 
aforementioned train, feedback, correct cycle of the IML (see 
Figure 2).  To accomplish the fast and focused UI principle, 
this loop must be easy and quick to cycle through. To be 
interactive the training part of the loop must take less than 
five seconds and generally much faster.  The cycle can be 
broken down into two components: the UI and the Classifier.  
The UI component needs to be simple so the user can remain 
focused on the classification problem at hand.  The classifier 
creation needs to be fast and efficient so the user gets 
feedback as quickly as possible, so they are not distracted 
from the classification problem. 

 
Figure 4 – The classification design loop 
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Although the IML and the machine-learning component of 
Crayons are the primary discussion of this paper it is notable 
to mention that Crayons has profited from work done by 
Viola and Jones [19] and Jaimes and Chang [5,6,7].  Also a 
brief example of how Crayons can be used is illustrative.  The 
sequence of images in Figure 5 shows the process of creating 
a classifier using Crayons. 

 

 

 
Figure 5 – Crayons interaction process 

 
Figure 5 illustrates how the user initially paints very little 
data, views the feedback provided by the resulting classifier, 
corrects by painting additional class pixels and then iterates 
through the cycle.  As seen in the first image pair in Figure 5, 
only a little data can generate a classifier that roughly learns 
skin and background.  The classifier, however, over-
generalizes in favor of background; therefore, in the second 
image pair you can see skin has been painted where the 
classifier previously did poorly at classifying skin.  The 
resulting classifier shown on the right of the second image 
pair shows the new classifier classifying most of the skin on 
the hand, but also classifying some of the background as skin.  
The classifier is corrected again, and the resulting classifier is 
shown as the third image pair in the sequence.  Thus, in only 
a few iterations, a skin classifier is created. 
The simplicity of the example above shows the power that 
Crayons has due to the effectiveness of the IML model.  The 
key issue in the creation of such a tool lies in quickly 

generating effective classifiers so the interactive design loop 
can be utilized. 

MACHINE LEARNING 
For the IML model to function, the classifier must be 
generated quickly and be able to generalize well.  As such we 
will first discuss the distinctions between IML and CML, 
followed by the problems IML must overcome because of its 
interactive setting, and lastly its implementation details 
including specific algorithms. 

CML vs. IML 
Classical machine learning generally has the following 
assumptions. 

• There are relatively few carefully chosen features,  
• There is limited training data,  
• The classifier must amplify that limited training data 

into excellent performance on new training data,  
• Time to train the classifier is relatively unimportant as 

long as it does not take too many days. 
None of these assumptions hold in our interactive situation.  
Our UI designers have no idea what features will be 
appropriate.  In fact, we are trying to insulate them from 
knowing such things.  In our current Crayons prototype there 
are more than 150 features per pixel.  To reach the breadth of 
application that we desire for Crayons we project over 1,000 
features will be necessary. The additional features will handle 
texture, shape and motion over time.  For any given problem 
somewhere between three and fifteen of those features will 
actually be used, but the classifier algorithm must 
automatically make this selection.  The classifier we choose 
must therefore be able to accommodate such a large number 
of features, and/or select only the best features.  
In Crayons, when a designer begins to paint classes on an 
image a very large number of training examples is quickly 
generated.  With 77K pixels per image and 20 images one 
can rapidly generate over a million training examples.  In 
practice, the number stays in the 100K examples range 
because designers only paint pixels that they need to correct 
rather than all pixels in the image.  What this means, 
however, is that designers can generate a huge amount of 
training data very quickly.  CML generally focuses on the 
ability of a classifier to predict correct behavior on new data.  
In IML, however, if the classifier’s predictions for new data 
are wrong, the designer can rapidly make those corrections.  
By rapid feedback and correction the classifier is quickly (in 
a matter of minutes) focused onto the desired behavior.  The 
goal of the classifier is not to predict the designer’s intent into 
new situations but rapidly reflect intent as expressed in 
concrete examples. 
Because additional training examples can be added so 
readily, IML’s bias differs greatly from that of CML.  
Because it extrapolates a little data to create a classifier that 
will be frequently used in the future, CML is very concerned 
about overfit.  Overfit is where the trained classifier adheres 
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too closely to the training data rather than deducing general 
principles. Cross-validation and other measures are generally 
taken to minimize overfit. These measures add substantially 
to the training time for CML algorithms.  IML’s bias is to 
include the human in the loop by facilitating rapid correction 
of mistakes.  Overfit can easily occur, but it is also readily 
perceived by the designer and instantly corrected by the 
addition of new training data in exactly the areas that are most 
problematic.  This is shown clearly in Figure 5 where a 
designer rapidly provides new data in the edges of the hand 
where the generalization failed. 
Our interactive classification loop requires that the classifier 
training be very fast.  To be effective, the classifier must be 
generated from the training examples in under five seconds.  
If the classifier takes minutes or hours, the process of ‘train-
feedback-correct’ is no longer interactive, and much less 
effective as a design tool.  Training on 100,000 examples 
with 150 features each in less than five seconds is a serious 
challenge for most CML algorithms. 
Lastly, for this tool to be viable the final classifier will need 
to be able to classify 320 x 240 images in less than a fourth of 
a second.  If the resulting classifier is much slower than this it 
becomes impossible to use it to track interactive behavior in a 
meaningful way.   

IML Implementation 
Throughout our discussion thus far, many requirements for 
the machine-learning algorithm in IML have been made.  The 
machine-learning algorithm must: 

• learn/train very quickly, 
• accommodate 100s to 1000s of features, 
• perform feature selection, 
• allow for tens to hundreds of thousands of training 

examples. 
These requirements put firm bounds on what kind of a 
learning algorithm can be used in IML.  They invoke the 
fundamental question of which machine-learning algorithm 
fits all of these criteria.  We discuss several options and the 
reason why they are not viable before we settle on our 
algorithm of choice: decision trees (DT). 
Neural Networks [12] are a powerful and often used 
machine-learning algorithm.  They can provably approximate 
any function in two layers.  Their strength lies in their 
abilities to intelligently integrate a variety of features.  Neural 
networks also produce relatively small and efficient 
classifiers, however, there are not feasible in IML.  The 
number of features used in systems like Crayons along with 
the number of hidden nodes required to produce the kinds of 
classifications that are necessary completely overpowers this 
algorithm.  Even more debilitating is the training time for 
neural networks.  The time this algorithm takes to converge is 
far to long for interactive use. For 150 features this can take 
hours or days. 

The nearest-neighbor algorithm [1] is easy to train but not 
very effective.  Besides not being able to discriminate 
amongst features, nearest-neighbor has serious problems in 
high dimensional feature spaces of the kind needed in IML 
and Crayons.  Nearest-neighbor generally has a classification 
time that is linear in the number of training examples which 
also makes it unacceptably slow.  
There are yet other algorithms such as boosting that do well 
with feature selection, which is a desirable characteristic.  
While boosting has shown itself to be very effective on tasks 
such as face tracing [18], its lengthy training time is 
prohibitive for interactive use in Crayons. 
There are many more machine-learning algorithms, however, 
this discussion is sufficient to preface to our decision of the 
use of decision trees.  All the algorithms discussed above 
suffer from the curse of dimensionality.  When many features 
are used (100s to 1000s), their creation and execution times 
dramatically increase.  In addition, the number of training 
examples required to adequately cover such high dimensional 
feature spaces would far exceed what designers can produce.  
With just one decision per feature the size of the example set 
must approach 2100, which is completely unacceptable.  We 
need a classifier that rapidly discards features and focuses on 
the 1-10 features that characterize a particular problem.   
Decision trees [10] have many appealing properties that 
coincide with the requirements of IML.  First and foremost is 
that the DT algorithm is fundamentally a process of feature 
selection.  The algorithm operates by examining each feature 
and selecting a decision point for dividing the range of that 
feature.  It then computes the “impurity” of the result of 
dividing the training examples at that decision point.  One can 
think of impurity as measuring the amount of confusion in a 
given set.  A set of examples that all belong to one class 
would be pure (zero impurity).  There are a variety of 
possible impurity measures [2].  The feature whose partition 
yields the least impurity is the one chosen, the set is divided 
and the algorithm applied recursively to the divided subsets.  
Features that do not provide discrimination between classes 
are quickly discarded. The simplicity of DTs also provides 
many implementation advantages in terms of speed and space 
of the resulting classifier. 
Quinlan’s original DT algorithm [10] worked only on 
features that were discrete (a small number of choices).  Our 
image features do not have that property.  Most of our 
features are continuous real values.  Many extensions of the 
original DT algorithm, ID3, have been made to allow use of 
real–valued data [4,11].  All of these algorithms either 
discretize the data or by selecting a threshold T for a given 
feature F divide the training examples into two sets where 
F<T and F>=T.  The trick is for each feature to select a value 
T that gives the lowest impurity (best classification 
improvement).  The selection of T from a large number of 
features and a large number of training examples is very slow 
to do correctly. 
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We have implemented two algorithms, which employ 
different division techniques. These two algorithms also 
represent the two approaches of longer training time with 
better generalization vs. shorter training time with poorer 
generalization. The first strategy slightly reduces interactivity 
and relies more on learning performance.  The second relies 
on speed and interactivity.  The two strategies are Center 
Weighted (CW) and Mean Split (MS). 
Our first DT attempt was to order all of the training examples 
for each feature and step through all of the examples 
calculating the impurity as if the division was between each 
of the examples.  This yielded a minimum impurity split, 
however, this generally provided a best split close to the 
beginning or end of the list of examples, still leaving a large 
number of examples in one of the divisions.  Divisions of this 
nature yield deeper and more unbalanced trees, which 
correlate to slower classification times.  To improve this 
algorithm, we developed Center Weighted (CW), which does 
the same as above, except that it more heavily weights central 
splits (more equal divisions).  By insuring that the split 
threshold is generally in the middle of the feature range, the 
resulting tree tends to be more balanced and the sizes of the 
training sets to be examined at each level of the tree drops 
exponentially.   
CW DTs do, however, suffer from an initial sort of all 
training examples for each feature, resulting in a O(f * N log 
N) cost  up front, where f is the number of features and N the 
number of training examples.  Since in IML, we assume that 
both f and N are large, this can be extremely costly. 
Because of the extreme initial cost of sorting all N training 
examples f times, we have extended Center Weighted with 
CWSS.  The ‘SS’ stand for sub-sampled.  Since the iteration 
through training examples is purely to find a good split, we 
can sample the examples to find a statistically sound split.  
For example, say N is 100,000, if we sample 1,000 of the 
original N, sort those and calculate the best split then our 
initial sort is 100 times faster.  It is obvious that a better 
threshold could be computed using all of the training data, but 
this is mitigated by the fact that those data items will still be 
considered in lower levels of the tree.  When a split decision 
is made, all of the training examples are split, not just the sub-
sample.  The sub-sampling means that each node’s split 
decision is never greater than O(f*1000*5), but that 
eventually all training data will be considered. 
Quinlan used a sampling technique called “windowing”.  
Windowing initially used a small sample of training examples 
and increased the number of training examples used to create 
the DT, until all of the original examples were classified 
correctly [11].  Our technique, although similar, differs in that 
the number of samples is fixed.  At each node in the DT a 
new sample of fixed size is drawn, allowing misclassified 
examples in a higher level of the DT to be considered at a 
lower level. 

The use of sub-sampling in CWSS produced very slight 
differences in classification accuracy as compared to CW, but 
reduced training time by a factor of at least two (for training 
sets with N ≥ 5,000).  This factor however will continue to 
grow as N increases.  (For N = 40,000 CWSS is 
approximately 5 times faster than CW; 8 for N = 80,000.) 
The CW and CWSS algorithms spend considerable 
computing resources in trying to choose a threshold value for 
each feature.  The Mean Split (MS) algorithm spends very 
little time on such decisions and relies on large amounts of 
training data to correct decisions at lower levels of the tree.  
The MS algorithm uses T=mean(F) as the threshold for 
dividing each feature F and compares the impurities of the 
divisions of all features.  This is very efficient and produces 
relatively shallow decision trees by generally dividing the 
training set in half at each decision point.  Mean split, 
however, does not ensure that the division will necessarily 
divide the examples at points that are meaningful to correct 
classification.  Successive splits at lower levels of the tree 
will eventually correctly classify the training data, but may 
not generalize as well. 
The resulting MS decision trees are not as good as those 
produced by more careful means such as CW or CWSS.  
However, we hypothesized, that the speedup in classification 
would improve interactivity and thus reduce the time for 
designers to train a classifier.  We believe designers make up 
for the lower quality of the decision tree with the ability to 
correct more rapidly.  The key is in optimizing designer 
judgment rather than classifier predictions.  MSSS is a sub-
sampled version of MS in the same manner as CWSS.  In 
MSSS, since we just evaluate the impurity at the mean, and 
since the mean is a simple statistical value, the resulting 
divisions are generally identical to those of straight MS. 
As a parenthetical note, another important bottleneck that is 
common to all of the classifiers is the necessity to calculate 
all features initially to create the classifier.  We made the 
assumption in IML that all features are pre-calculated and 
that the learning part will find the distinguishing features.  
Although, this can be optimized so it is faster, all algorithms 
will suffer from this bottleneck.  
There are many differences between the performances of 
each of the algorithms.  The most important is that the CW 
algorithms train slower than the MS algorithms, but tend to 
create better classifiers.  Other differences are of note though.  
For example, the sub sampled versions, CWSS and MSSS, 
generally allowed the classifiers to be generated faster.  More 
specifically, CWSS was usually twice as fast as CW, as was 
MSSS compared to MS. 
Because of the gains in speed and lack of loss of 
classification power, only CWSS and MSSS will be used for 
comparisons.  The critical comparison is to see which 
algorithm allows the user to create a satisfactory classifier the 
fastest.  User tests comparing these algorithms are outlined 
and presented in the next section. 
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EVALUATIONS 
User tests were conducted to evaluate the differences between 
CWSS and MSSS.  When creating a new perceptual interface 
it is not classification time that is the real issue.  The 
important issue is designer time.  As stated before, 
classification creation time for CWSS is longer than MSSS, 
but the center-weighted algorithms tend to generalize better 
than the mean split algorithms.  The CWSS generally takes 1-
10 seconds to train on training sets of 10,000-60,000 
examples, while MSSS is approximately twice as fast on the 
same training sets.  These differences are important; as our 
hypothesis was that faster classifier creation times can 
overcome poorer inductive strength and thus reduce overall 
designer time. 
To test the difference between CWSS and MSSS we used 
three key measurements: wall clock time to create the 
classifier, number of classify/correct iterations, and structure 
of the resulting tree (depth and number of nodes).  The latter 
of these three corresponds to the amount of time the classifier 
takes to classify an image in actual usage.   
In order to test the amount of time a designer takes to create a 
good classifier, we need a standard to define “good 
classifier”.  A “gold standard” was created for four different 
classification problems: skin-detection, paper card tracking, 
robot car tracking and laser tracking.  These gold standards 
were created by carefully classifying pixels until, in human 
judgment, the best possible classification was being 
performed on the test images for each problem. The resulting 
classifier was then saved as a standard. 
Ten total test subjects were used and divided into two groups.  
The first five did each task using the CWSS followed by the 
MSSS and the remaining five MSSS followed by CWSS.  
The users were given each of the problems in turn and asked 
to build a classifier.  Each time the subject requested a 
classifier to be built that classifier’s performance was 
measured against the performance of the standard classifier 
for that task. When the subject’s classifier agreed with the 
standard on more than 97.5% of the pixels, the test was 
declared complete.   
Table 1, shows the average times and iterations for the first 
group, Table 2, the second group. 
 

 CWSS MSSS 
Problem Time Iterations Time Iterations

Skin 03:06 4.4 10:35 12.6 
Paper Cards 02:29 4.2 02:23 5.0 
Robot Car 00:50 1.6 01:00 1.6 
Laser 00:46 1.2 00:52 1.4 

Table 1 – CWSS followed by MSSS 
 

 MSSS CWSS 
Problem Time Iterations Time Iterations

Skin 10:26 11.4 03:51 3.6 
Paper Cards 04:02 5.0 02:37 2.6 
Robot Car 01:48 1.2 01:37 1.2 
Laser 01:29 1.0 01:16 1.0 

Table 2 – MSSS followed by CWSS 
The laser tracker is a relatively simple classifier because of 
the uniqueness of bright red spots [9]. The robot car was 
contrasted with a uniform colored carpet and was similarly 
straightforward. Identifying colored paper cards against a 
cluttered background was more difficult because of the 
diversity of the background. The skin tracker is the hardest 
because of the diversity of skin color, camera over-saturation 
problems and cluttered background [20].  
As can be seen in tables 1 and 2, MSSS takes substantially 
more designer effort on the hard problems than CWSS. All 
subjects specifically stated that CWSS was “faster” than 
MSSS especially in the Skin case.  (Some did not notice a 
difference between the two algorithms while working on the 
other problems.)  We did not test any of the slower 
algorithms such as neural nets or nearest-neighbor.  
Interactively these are so poor that the results are self-evident.  
We also did not test the full CW algorithm.  Its classification 
times tend into minutes and clearly could not compete with 
the times shown in tables 1 and 2.  It is clear from our 
evaluations that a classification algorithm must get under the 
10-20 second barrier in producing a new classification, but 
that once under that barrier, the designer’s time begins to 
dominate.  Once the designer’s time begins to dominate the 
total time, then the classifier with better generalization wins. 
We also mentioned the importance of the tree structure as it 
relates to the classification time of an image.  Table 3 shows 
the average tree structures (tree depth and number of nodes) 
as well as the average classification time (ACT) in 
milliseconds over the set of test images. 
 

 CWSS MSSS 
Problem Depth Nodes ACT Depth Nodes ACT

Skin 16.20 577 243 25.60 12530 375 
Paper 
Cards 15.10 1661 201 16.20 2389 329 

Car 13.60 1689 235 15.70 2859 317 
Laser 13.00 4860 110 8.20 513 171 

Table 3 – Tree structures and average classify time (ACT) 
As seen in Table 3, depth, number of nodes and ACT, were 
all lower in CWSS than in MSSS.  This was predicted as 
CWSS provides better divisions between the training 
examples. 
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While testing we observed that those who used the MSSS 
which is fast but less accurate, first, ended up using more 
training data, even when they used the CWSS, which usually 
generalizes better and needs less data.  Those who used the 
CWSS first, were pleased with the interactivity of CWSS and 
became very frustrated when they used MSSS, even though it 
could cycle faster through the interactive loop.  In actuality, 
because of the poor generalization of the mean split 
algorithm, even though the classifier generation time for 
MSSS was quicker than CWSS, the users felt it necessary to 
paint more using the MSSS, so the overall time increased 
using MSSS.  

CONCLUSION 
When using machine learning in an interactive design setting, 
feature selection must be automatic rather than manual and 
classifier training-time must be relatively fast. Decision Trees 
using a sub-sampling technique to improve training times are 
very effective for both of these purposes. Once interactive 
speeds are achieved, however, the quality of the classifier’s 
generalization becomes important. Using tools like Crayons, 
demonstrates that machine learning can form an appropriate 
basis for the design tools needed to create new perceptual 
user interfaces. 
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