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ABSTRACT 

We describe an architecture which allows any external 
agent (human or software) to point into the visual space 
of an interactive application. We describe the visual design 
of a scheme for highlighting any information in any 
application. This architecture requires the application to 
provide information about its semantic structure as part of 
its redraw algorithms. Based on this semantic map 
generalized pointer descriptions are defined and used to 
reference objects to be highlighted. The architecture is 
demonstrated using a multibookmark agent framework and 
several example applications. 

THE MULTIAGENT POINTING PROBLEM 

This work takes as its fundamental assumption the 
importance of transforming the single-user interactive 
environment into one where multiple agents interact with 
the user in the same work context, We use the term agents 
to refer to any human or process that acts independently in 
the same work context as the primary user. Agents may 
be other people, spell checkers, design critics [3], 
grammar checkers, assistance wizards, scripting by 
example or other tools that can offer assistance in the 
interactive workspace. 

A second basic assumption of our work is that multiagent 
activity must be pervasive throughout the interactive 
environment and not confined to specific applications. 
This is true because 1)users will need assistance (human 
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or software) in all aspects of their endeavors not just 
special “cooperative places,” and 2) the mechanisms for 
conversing with other agents need to be uniform across 
the environment so that the burden of cooperation does 
not become so high that it is worthless. 

Achieving a multiagent interactive environment is too 
large a challenge for this paper. A fundamental stepping 
stone towards this goal, however, is the ability for agents 
to point into a visual space without interfering with the 
user’s ability to interact in that space. Whenever two 
people discuss anything that has a physical manifestation, 
whether document, image, automobile part, or dog, they 
regularly gesture and point. The ability to draw visual 
attention to the particular aspect being discussed is 
fundamental. It is this ability of a software-based agent to 
point (draw the user’s attention) into the visual space of 
any application in the environment that is the key 
contribution of this paper. 

This pointing problem manifests itself in many forms in 
existing software. It occurs when a spreadsheet wants to 
show all cells on which some formula is dependent, when 
a search agent shows all instances of the word “foo” in a 
drawing, when Widgets By Example [7] needs to show the 
objects referenced in an inferred constraint, when a design 
critic must indicate all objects violating design rules, or 
when a change management tool must show recently 
modified objects. 

An important design assumption in our work is that 
pointing by other agents needs to attract attention rather 
than coerce it. The behavior of tools such as Find or Spell 
Check, which commandeer the user’s selection mechanism 
as a means of drawing the user’s attention, is 
unacceptable. The user must be in control of how much 
attention other agents can demand. 
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Our approach 
Our attack on this problem has two aspects. The first is 
the visual design task of developing a highlighting or 
pointing mechanism that will visually attract a user’s 
attention without interfering with the user’s work, and 
without requiting any application to change the design of 
its information display. The second problem is to 
algorithmically modify an application’s display so as to 
present the highlight to the user without forcing 
application pro,- ers to embed the highlighting 
scheme into the code of every application. The pointing or 
highlighting scheme must also support multiple agents 
working simultaneously in consort with the user. 

VISUAL DESIGN OF HIGHLIGHTING 

The problem with designing a highlighting scheme that 
works across all applications is that any visual cue that 
one might choose could conflict with visual cues coded 
into a given application. We were very unwilling to 
restrict the visual design space of applications in order to 
accommodate the highlighting. The problem is to draw 
the user’s attention to an area without obscuring the 
application information already there and without having 
the highlight be mistaken for application content. 

A second requirement is that the user must be able to 
control the strength of a highlighting scheme. Unlike 
spell checkers, which function by dominating the 
interaction, we wanted the user to be aware or ignore the 
activities of independent agents as desired. This means that 
highlighted as well as unhighlighted portions of the 
display must be visible and usable at the user’s discretion. 

A third requirement is that multiple simultaneous agents 
must be supported. If there is a grammar checker, a spell 
checker, and a change management tool active in the 
environment, it must be possible for each to draw the 
user’s attention and the user must be able to discriminate 
among them visually. 

The last requirement is that the highlighting must involve 
a simple direct algorithm that is easily implemented as 
part of the application drawing architecture. The drawing 
of the highlight cannot impede the performance of the 
application. 

The process 

Our approach to this design problem was to take screen 
dumps of as many existing application as we could find 
For each screen dump we devised a set of possible objects 
to be highlighted This formed our visual test-bed against 

which we could test the effectiveness of our ideas. We 
tested and discarded a number of ideas: 

l BoZding or thickening of selected objects. This distorts 
the nature of the selected objects. 

9 Bluning of unselected infomtion. This is quite 
effective in visually highlighting but reduced clarity. 

l Make the selected objects wiggle. Motion is very 
difficult to ignore and therefore too demanding for our 
purposes. 

Basic highlight 

We concluded that there was no acceptable highlighting 
that would be visually orthogonal to every application’s 
information display. We instead focused on “bending the 
color space” of unhighlighted items so that they would 
visually recede relative to the highlighted objects. Our 
approach is a simple blending of all unhighlighted colors 
with some neutral color. Blending unhighlighted items 
with a neutral color reduces their contrast and detail, 
making the highlighted items more visually prominent 
and unchanged. 

Choice of the neutral blending color is somewhat 
application-dependent. For most applications a light gray 
is very effective. For applications which are monochrome, 
a pastel color is effective because the unselected items 
assume a hue that contrasts with gray levels of the 
selected items. 
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Figure 1 - Varying the highlight intensity 
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The parameters to our function are the blending color and 
the highZight intensity. Highlight intensity is a user 
controlled parameter ranging from 0.0 (no highlighting) to 
1.0 (only selected objects can be seen). Our experiments 
showed that users must have control of the highlighting. 
First, because user goals may vary, and secondly, because 
various application objects have different levels of visual 
strength. Compare the highlighting intensities in the right 
column of figure 1 to those in the left. Note that the 
polygon on the right stands out as a highlight much 
sooner than the “n” on the left. 

The effect of the highlighted polygon is much more 
striking on a large display than in the small images of 
figure 1. The “n” in a large image must show very high 
highlight intensity before it is visible at all. Note, 
however, that high highlighting intensity makes the 
unhighlighted objects much harder to work with. The 
intensity parameter gives the user the necessary control to 
adjust to the task at hand. 

Given the two parameters (BC. and HI) and a color for an 
unhighlighted object(OC) the formula for the blended 
color is BC+II + 00(1-HI). 

Multiagent highlight 

The blending method serves to bring highlighted objects 
into the foreground This does not deal with the problem 
of discriminating among multiple agents. Solutions to 
this probIem will depend on whether there are 2-3 agents, 
lo-20 agents, or lOOi- agents. Our conclusion is that 
other than outright labeling of every highlighted item 
with the identity of the responsible agent, we could not 
visually encode more than about 5 agents at a time. We 
concluded that there would need to be a legend somewhere 
that related the visual encoding to information about the 
actual agents, be they people or software. Such a legend 
could group together many agents in a single encoding and 
all the encodings would be under user control 

The problem of visual conflict between the agent 
identification and the visual encoding of application 
information is mitigated by the way in which the blending 
algorithm works. By blending colors of all unhighlighted 
objects towards a single color, the color space of the 
unhighlighted area is sharply restricted. (See figure 1.) By 
placing our agent encoding in the unhighlighted area we 
can use a portion of the color space that is distant from 
the blending color and thus separate the agent indicators 
from application information. As with the simple 
highlight the visual contrast of the agent indicators with 
application data will increase as the highlight intensity is 
increased. 

Our agent encoding technique computes a rectilinear 
region for the selected area of each agent, expands that 
region by a small number of pixels, and then draws that 
region’s border using the color associated with the agent. 
By expanding the region before drawing it, we push the 
agent encoding away from the highlighted objects so that 
it does not interfere with them and out into the blended 
areas where the visual contrast will be better. If the 
blending color is a gray (which we have found effective in 
most cases), encoding agents with color that have above 
average saturation works very well. 

One of the problems with multiagent pointing is that 
more than one agent may point at the same object. The 
agent indicators (in our case the borders) may overlap and 
obscure each other. We have accommodated this by 
expanding each agent’s region by a different number of 
pixels. This prevents the overlap and preserves the 
encoding information. The end result is shown in figure 2. 

Figure 2 - Multiagent Selection 

THE NATURE OF POINTING 

The purpose of this work is to allow multiple agents to 
draw a user’s attention to various items in the workspace. 
In most real applications this has both a local and a global 
aspect, due to the fact that real applications typically 
occupy a visual space much larger than is available on a 
computer screen. Local pointing involves highlighting 
those currently visible objects to which the agents want to 
draw attention. The highlighting techniques described 
above deal with the local pointing problem. 

The global pointing problem involves drawing the user’s 
attention to objects that are not currently visible. Global 
pointing depends on the organizational model for the 
information and how the user will navigate the 
information space. The simplest of these is the infinite 
2D surface with scrolling as the navigation technique. 
Techniques for pointing in this model have already been 
developed including scroll-bar variants [5,6] and radar 
views [4]. A software architecture for integrating these 
techniques with any application is discussed later in this 
paper. 
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Other information ora&zations include the zooming 
model of Pad++- [ 11. Hierarchic or linked organizations are 
also used as in the Macintosh Finder or the workbook 
sheets in the new versions of Microsoft Excel. The 
zooming model shares most of the features of the 
scrolling model with the exception of objects that am 
“zoomed” to smaller than a pixel. Zoomed objects that ate 
outside the currently visible range can be dealt with just as 
with other “scrolled-away” objects. By assi,tig any 
selected object a minimum region of 1 pixel and then 
expanding that region by several pixels, even objects that 
are zoomed into invisibility can be highlighted. 

In hierarchic organizations, there is always a visible object 
that serves as a surrogate for a group of hidden objects. In 
the Finder, for example, the surrogate for a hidden 
&rectory is the folder icon. In the Excel workbook there is 
a tab across the bottom for each hidden sheet. If objects 
inside of a hidden group are selected by an agent, the 
surrogate object can be highlighted using the techniques 
already described For example, a directory folder can be 
highlighted if any of its contents are being referenced by 
an agent. The user thus has sufficient information to 
locate the highlighted material. 

All of the above models for information can use the 
blended highlight with other global pointing widgets to 
provide a complete pointing mechanism for multiple 
agents. The one exception to this is the searchable space. 
This is a space such as a database that has no visual 
organization. Queries are created and results are returned 
but there never is any global geometry assigned to the 
entire space of information. No pointing technique is 
useful in this case. In such cases agents must describe 
possible queries that would return the selected 
information. Such techniques are important but outside 
the scope of this work. 

A notable hybrid is the World -V&de Web. For the web as 
a whole, there is no global visualization. The WWW in a 
global sense is a searchable rather than a navigable space. 
.On the other hand, once a page is selected a local traversal 
tree of direct and indirect links from that page can then be 
treated using the techniques described above. Agents will 
then have an organization into which they can point and 
techniques for doing the pointing. 

IMPLEMENTATION OF POINTING 
There are several problems in actually implementing these 
pointing techniques on top of any application in the 
interactive environment. Our goal is to require only 
minimal changes to the applications and that these simple 
changes suffice for a wide range of agents and interactive 
services. 

The first and most important problem is to actually define 
what a pointer is. For pointers to have any real meaning 
they must be defined in terms of the semantic structure of 
the application. For our highlighting techniques to work 
this semantic structure must be mapped onto the objects 
drawn on the screen by the application. Having defined the 
nature of a pointer we need algorithms to implement the 
highlighting without requiring a rewrite of all 
applications. Lastly we need to extract geometry 
information about the highlighted regions so that agent 
indicators and other global pointing widgets can be 
implemented. 

Semantic / Surface Mapping 

Every interactive application has some form of the 
architecture shown in figure 3. In most such applications 
this architecture is replicated for each independent view of 
the model, or views of different models. 

Reference and Change a 

e 

Figure 3 - Application Architecture 

The goal of the application is to present and manipulate 
the information in the semantic model. For a given view, 
there is code that renders some portion of the semantic 
model onto an infinite 2D surface. Scrolling or other 
navigation techniques are used to present this surface on 
the limited screen space available to the application. As 
part of this renderin, a operation, the application usually 
traverses the semantic model in a semirecursive fashion, 
extracting information from the model and transforming it 
into drawing primitives on the surface. 

The user in turn generates inputs in terms of the images 
presented on the surface. The application must translate 
these surface-based inputs into references to objects in the 
semantic model and changes to that model. Frequently 
such manipulations are defined in terms of a selected 
object or objects (as indicated by the circle in figure 3). 
These selected objects are the raw material for our 
pointers. 

The problem is to define application-independent 
references to such selected objects so that external agents 
can save, manipulate and highlight the referenced objects. 
When the rendering code traverses the semantic model, it 
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generates a tree traversal of the information regardless of 
the actual structure of the model. Different views will take 
different traversals and thus generate diierent trees. Our 
approach is to capture the structure of this traversal tree 
during the rendering process so as to create a map between 
this traversal tree and geometric objects on the surface. 

As the model is being traversed, the rendering software 
moves from object to object by following links of 
various sorts. Each such link can be identified by a textual 
name or an integer index. Such identifiers need only have 
meaning to the application itself. 

Defining pointers 

Note that pointing, highlighting and selecting operations 
are all defined at the surface where the user can perceive 
them. Because of this surface orientation we use the 
renderer’s traversal tree as our model description rather 
than the full generality of the semantic model’s structure. 
Based on this, a given object can be identified by the path 
from the root of the traversal tree to the desired object (as 
shown by the darkened line in figure 3). A simple object 
pointer, therefore, is a sequence of integers or strings 
defining the links between objects in the rendering 
traversal. Exactly what these strings or indices are and 
how they relate to the underlying structure of the 
application is unimportant, provided they arc used 
consistently by the application. This approach for defining 
pointers is similar to our earlier work on semantic 
telepointers [S]. 

In many cases an agent will need to reference more than 
one object. A spell checker, for example, must reference 
all misspelled words. We extended our referencing 
mechanism to combine the paths of all selected objects 
into a single tree by combining paths with common 
prefixes into the same subtree. Some nodes in the tree can 
also represent ranges of indices rather than individual 
nodes for each index. This would be appropriate for the 3 
consecutive days highlighted in the calendar application in 
figure 2. 

Capturing drawing calls 

Having a representation for pointers that is application- 
independent, our general tools need access to the drawing 
behavior of the application. We exploit a technique 
pioneered in [2] of using specialized drawing classes. In 
most modem windowing systems, the actual mechanisms 
for drawing into a window are isolated from the 
application by an abstract interface. This may be object- 
oriented as in the case of Java’s Graphics class or 
SubArctic’s drawable class, or it may be pseudo- 
object-oriented as in the Microsoft Windows device 
context. 

By substituting our own class for the standard drawing 
class, we capture all.of the calls that the application’s 
rendering code may generate. This provides us with 
complete control over the application’s drawing behavior 
without interfering with the application’s normal 
implementation. We must, however, impose our first 
requirement on the application - it must be capable of 
rendering its entire 2D surface rather than just the portion 
in the visible window. We need access to the entire surface 
so that we can extract the global pointing information for 
showing where scrolled-away items can be found. The 
inefftciencies of requiring an application to render 
everything rather than just the portion visible in the 
window can be mitigated by visible bounds techniques. If 
the application will interrogate the clipping rectangle, it 
can optimize what sections of the surface should be drawn. 
By setting the clipping rectangle to the size of the whole 
surface we can capture the entire drawing area. By 
invoking an application’s Redraw or Paint method with 
one of our specialized drawing classes, we can capture any 
information about the application’s visual presentation 
while imposing minimal changes on the application’s 
architecture. 

Capturing the semantic map 

Simply capturing drawing calls is not sufficient to 
implement the highlighting techniques because they 
contain no information about which drawn objects are 
mapped to which semantic objects in the rendering 
traversal tree. 

To accommodate this need we have added three calls to the 
drawable class. They are: 

GroupStart (String Name, String Type) 
GroupStart(int Index, String Type) 
Groupmd ( ) 

As part of its rendering algorithm, an application is 
expected to call GroupStart before drawing 
information from a particular object. The object can be 
identified by a string name or by an index depending on 
the GroupStart method used. In addition to identifying 
the object, a string type for the object can also be 
supplied. The type information is not used by the 
highlighting mechanism but is helpful for other surface- 
based techniques that we are developing. After an object is 
drawn, GroupEnd is called. The calls to GroupStart 
and GroupEnd can be nested to any depth. Example 
pseudo-code for drawing the calendar application on a 
surface S is shown in figure 5. 

530 



CHJ 98 e 18-23 APRIL 3 998 PAPERS ! . 

For each month M 
{ S, GroupStart (N-name, Wonth” ) ; 

S-draw ihe month name 
S, draw the days of the week 
For each day D in $1 
{ S. GroupStart (D. date, “Day”) ; 

S _ draw day rectangle 
S.draw day border 
S. draw the date 
S _ GroupFnd ( ) ; 

&Groupmd() ; 
1 

Fignre 5 - Example Calendar Rendering Code 

These calls provide all of the information necessary to 
capture the rendering traversal tree. Including 
GroupStart and GroupEnd calls in the rendering code 
is the second major implementation requirement that we 
impose on an application. We do not consider this 
excessive, however, because such calls are relatively 
straightforward to add to existing rendering code with 
reasonable structure. It is far easier, for example, to 
include the GroupStart/GroupEnd calls than to 
implement Cut/Copy/paste or OLE objects. These calls 
provide a link between surface geometry and the 
underlying model structure. A major part of our future 
research will leverage this surface/model mapping to 
support more powerful agent behavior than simple 
pointing. 

Implementing highlighting 

Based on the machinery described above, we can define a 
special HighlightSurface class which is a subclass 
of drawable. (We are using SubArctic. Similar 
techniques will work in most other object-oxiented 
windowing systems.) The HighlightSurface class 
passes all drawing routines on to drawable with the 
exception of the calls to set colors and the GroupStart 
and GroupEnd calls. The purpose of 
HighlightSurface is to draw the application 
information using blended highlights. The global pointing 
widgets and the agent identifiers are handled separately. In 
order to draw correctly, the HighlightSurface class 
must have a reference to all objects being highlighted, a 
blending color, and a highlight intensity. 

Whenever the application redraws itself as part of its 
interactive behavior, it is given a HighlightSurf ace 
instead of a drawaMe. At each GroupStart call the 
surface will compare the name or index to the reference 
tree to determine if this group is selected or not. The 
selected state and position in the reference tree before 
GroupStart was called are pushed onto a stack. If the 
group is selected, then the current dmw color, as requested 
by the application, is passed on to the drawable. If the 

group is not selected the draw color is blended with the 
blend color as described above. The resulting blended color 
is passed to the drawable instead of the application’s 
requested color. When GroupEnd is called the stack is 
popped and the color settings restored to what they should 
be given the selected state of the enclosing group. The 
application rendering code never knows that highlighting 
has been done. This technique produces the drawings in 
figure 1. This blended highlight technique has very 
minimal impact on the drawing speed of the application. 

Capturing the selected region 

In order to draw the agent identifiers and to implement the 
global pointing widgets, we need to compute a geometric 
region on the surface for all selected objects identified by a 
given reference. Note that a reference may point at 
multiple objects, and that a given object may appear on 
the surface in multiple places. 

As with blended highlights, we create a subclass of 
drawable C&d SelectedRegion. The 
SelectedRegion class does not pass any of its calls 
on to drawable. As with Highlightsurface, the 
SelectedRegion must be given a reference tree. To 
compute the region geometry corresponding to the 
reference tree, the Paint or Redraw method on the 
application is called wivith a SelectedRegion for its 
drawable. The clipping rectangle associated with 
SelectedRegion is the size of the whole surface. The 
SelectedRegion initializes a Region object to 
empty. The Region object collects the bounding region 
for all selected groups. Each GroupStart is compared 
with the reference tree to determine selectedness. Whenever 
a drawing call is encountered within a selected group, that 
drawing primitive’s bounding region is unioned into the 
Region object. Any drawing call encountered in an 
unselected group is ignored. At the end of this process the 
Region object contains the bounding region for all 
selected groups. 

Executing the redraw code for an entire surface just to 
compute the bounding region for a single object can be 
very inefficient. For this reason the GroupStart 
method returns true if the named or indexed group is of 
interest and false otherwise. When drawing into the 
Highlightsurface, GroupStart always returns 
true because all groups need to be drawn. The 
SelectedRegion, however, returns false for any 
group that does nof contain selected objects. The pseudo- 
code of figure 5 can be optimized to that shown in figure 
6. This structure will minimize the cost of computing 
regions. 

. 
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For each month 14 
1 if (S.GroupStart (M-name, 

“Month” ) ) 
{ 

S-draw the month name 
S-draw the &ys of the week 
For each day D in 14 
1 if (S.GroupStart (D-date, 

“Day” 1) 
1 

S.draw day rectangle 
S.draw day border 
S-draw the date 

I 
S . GroupEnd ( ) ; 

1 
1 
S . GroupEnd ( ) ; 

I 
Figure 6 - Optimized Rendering Code 

One problem with computed highlight regions is that they 
may move as the application’s data is changed. We can 
track such changes in the same way that display changes 
are handled. When application data changes, the rendering 
system will damage the changed area causing the 
windowing system to request that those areas be repainted. 
Similarly such damage information can be used to 
recompute reference regions so that they are up to date. 

Once a region has been computed for a given agent, the 
region is expanded by a specified number of pixels and its 
border drawn in the agent’s color to produce the agent 
indicator. This is done for all agents after the highlight 
drawing has been done. Again the application knows 
nothing about any of this being done other than the 
successive calls to its drawing routine. 

BOOKMARKS FRAME DEMO 

In order to test the efficacy of our architecture we assigned 
students in our lab to implement 4 different applications 
using the standard SubArctic toolkit. They were: a 
drawing application, an appointment calendar, a tabular 
data presentation and editing tool, and a map-based 
planning application. Those implementing the 
applications did not know about the highlighting 
algorithms. 

We then built a simple framework that supports multiple 
bookmarks, shown in figure 7. The essence of the 
framework is that any object selected by any application 
embedded in the framework can be saved as a bookmark or 
added to an existing bookmark. The multiple bookmarks 
serve as surrogates for multiple agents, which we did not 
implement. 

The test was to take the existing applications and embed 
them in the bookmark framework, thus adding the 
multibookmark pointing feature to any application. 
Because we require some modifications to application 
code, we wanted to test how long it took to modify an 
application to work within the framework. Once the 
framework itself was debugged, each application took less 
than one man-day to embedding in the framework. The 
last application took less than 30 minutes to convert. 

The framework required that the application implement 
four new methods: 

interactor getSurfaceInteractor(); 
Rectangle getViewableArea(); 
TRef getModelRef ( ) ; 
void scrollSurfaceInteractor 

(int x, int y) ; 

Because we were embedding arbitrary applications into the 
framework, the first two methods are required so that the 
framework can separate controls and buttons from the 
working surface of the application. We decided that 
applications would use their own selection mechanisms 
which the bookmark facility exploits by requesting a 
reference to the cunently selected object. The fourth 
method allows global pointing widgets to force the 
application to scroll to a particular area in response to user 
inputs. Such coercion only occurs at the user’s request. 

The bookmark framework provides controls for the blend 
color and highlight intensity. The user has direct control 
over the highlight intensity using a scroll bar. 
The bookmark framework substitutes a 
HighlightSurf ace whenever the application is drawn 
and uses the blend color and intensity to provide the 
highlighting. When necessary, a SelectedRegion is 
used to compute the region for each bookmark. Each 
bookmark border is then drawn clipped to the viewable 
area rectangle. This implement the highlighting required 
for the bookmarks. 

In addition the bookmark frame provides three global 
pointing widgets. By projecting the bookmark regions 
along X and Y, we can define widgets that provide 
highlights along the vertical and horizontal axis. 
Greenberg reports that these are not very effective for 
collaborative’ use; however, the vertical version can 
implement the “wear marks” techniques of Hill and Hollan 
[5]. We find that when the total surface is very narrow in 
one dimension, the global pointing widget of the other 
dimension is very effective. In addition to these projected 
widgets there is a rectangular “mdar view” [4] which 
represents the entire surface area in miniature with the 
highlight regions drawn in their agent identification 



colors. Clicking on any of the global pointing widgets 
will force the application to scroll so as to make the 
indicated area visible. This supports navigating directly to 
highlighted areas. All of these global pointing widgets use 
the selected regions calculated from the drawing surface. 
These widgets are also independent of bookmarks and can 
be used by any agent needing global pointing. 

SUMMARY 
We have defined a mechanism for visually highlighting 
any object or objects in any application using our blended 
highlight technique. We also identify the responsible 
agent using our colored region borders. Selected regions 
calculated from the drawn images also drive the global 
pointing widgets. The heart of our algorithms are in the 
model/surface mapping information provided by the 
GroupStart and GroupEnd calls. These deliver 
semantic information to the surface where external agents 
can support the end user’s work. 
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