
-._-. -.i .-.. Lm<I_.--- .- . , _*-ir,-.2:.. _ _ _,,,

PAPEW CHI 98 l 18-23 APRIL 1998

Generalized Pointing: Enabling Multiagent Interaction

Dan R. Olsen Jr., Daniel Boyarski, Thorn Verratti, Matthew Phelps,
Jack L. Moffett, Edson L. Lo

Human-Computer Interaction Institute, Carnegie-MelIon University
Pittsburgh, PA 15213, dolsen@cs.cmu.edu

ABSTRACT

We describe an architecture which allows any external
agent (human or software) to point into the visual space
of an interactive application. We describe the visual design
of a scheme for highlighting any information in any
application. This architecture requires the application to
provide information about its semantic structure as part of
its redraw algorithms. Based on this semantic map
generalized pointer descriptions are defined and used to
reference objects to be highlighted. The architecture is
demonstrated using a multibookmark agent framework and
several example applications.

THE MULTIAGENT POINTING PROBLEM

This work takes as its fundamental assumption the
importance of transforming the single-user interactive
environment into one where multiple agents interact with
the user in the same work context, We use the term agents
to refer to any human or process that acts independently in
the same work context as the primary user. Agents may
be other people, spell checkers, design critics [3],
grammar checkers, assistance wizards, scripting by
example or other tools that can offer assistance in the
interactive workspace.

A second basic assumption of our work is that multiagent
activity must be pervasive throughout the interactive
environment and not confined to specific applications.
This is true because 1)users will need assistance (human

Permission to make di&L%ard copies of all or part of this material for
personal or classroom use is granted witbout fre provided that the copies
are not made or distributed for profit or canmercial advantage, tbe copy-
right notice. the title of the publication and its date appear. and notice is
given that copyright is by pmission oftbe AChl. Inc. To copy otherwise,
to republish. to post on servers or to rediibute to lists, requires specific

permission and/or fe.
CHl 98 Los Angeles CA USA
Copyigbt 1998 o-8979L975-0l9814.33.00

or software) in all aspects of their endeavors not just
special “cooperative places,” and 2) the mechanisms for
conversing with other agents need to be uniform across
the environment so that the burden of cooperation does
not become so high that it is worthless.

Achieving a multiagent interactive environment is too
large a challenge for this paper. A fundamental stepping
stone towards this goal, however, is the ability for agents
to point into a visual space without interfering with the
user’s ability to interact in that space. Whenever two
people discuss anything that has a physical manifestation,
whether document, image, automobile part, or dog, they
regularly gesture and point. The ability to draw visual
attention to the particular aspect being discussed is
fundamental. It is this ability of a software-based agent to
point (draw the user’s attention) into the visual space of
any application in the environment that is the key
contribution of this paper.

This pointing problem manifests itself in many forms in
existing software. It occurs when a spreadsheet wants to
show all cells on which some formula is dependent, when
a search agent shows all instances of the word “foo” in a
drawing, when Widgets By Example [7] needs to show the
objects referenced in an inferred constraint, when a design
critic must indicate all objects violating design rules, or
when a change management tool must show recently
modified objects.

An important design assumption in our work is that
pointing by other agents needs to attract attention rather
than coerce it. The behavior of tools such as Find or Spell
Check, which commandeer the user’s selection mechanism
as a means of drawing the user’s attention, is
unacceptable. The user must be in control of how much
attention other agents can demand.

526

Cl-l1 98 l 18-23 APRIL 1998 PAPERS

Our approach
Our attack on this problem has two aspects. The first is
the visual design task of developing a highlighting or
pointing mechanism that will visually attract a user’s
attention without interfering with the user’s work, and
without requiting any application to change the design of
its information display. The second problem is to
algorithmically modify an application’s display so as to
present the highlight to the user without forcing
application pro,- ers to embed the highlighting
scheme into the code of every application. The pointing or
highlighting scheme must also support multiple agents
working simultaneously in consort with the user.

VISUAL DESIGN OF HIGHLIGHTING

The problem with designing a highlighting scheme that
works across all applications is that any visual cue that
one might choose could conflict with visual cues coded
into a given application. We were very unwilling to
restrict the visual design space of applications in order to
accommodate the highlighting. The problem is to draw
the user’s attention to an area without obscuring the
application information already there and without having
the highlight be mistaken for application content.

A second requirement is that the user must be able to
control the strength of a highlighting scheme. Unlike
spell checkers, which function by dominating the
interaction, we wanted the user to be aware or ignore the
activities of independent agents as desired. This means that
highlighted as well as unhighlighted portions of the
display must be visible and usable at the user’s discretion.

A third requirement is that multiple simultaneous agents
must be supported. If there is a grammar checker, a spell
checker, and a change management tool active in the
environment, it must be possible for each to draw the
user’s attention and the user must be able to discriminate
among them visually.

The last requirement is that the highlighting must involve
a simple direct algorithm that is easily implemented as
part of the application drawing architecture. The drawing
of the highlight cannot impede the performance of the
application.

The process

Our approach to this design problem was to take screen
dumps of as many existing application as we could find
For each screen dump we devised a set of possible objects
to be highlighted This formed our visual test-bed against

which we could test the effectiveness of our ideas. We
tested and discarded a number of ideas:

l BoZding or thickening of selected objects. This distorts
the nature of the selected objects.

9 Bluning of unselected infomtion. This is quite
effective in visually highlighting but reduced clarity.

l Make the selected objects wiggle. Motion is very
difficult to ignore and therefore too demanding for our
purposes.

Basic highlight

We concluded that there was no acceptable highlighting
that would be visually orthogonal to every application’s
information display. We instead focused on “bending the
color space” of unhighlighted items so that they would
visually recede relative to the highlighted objects. Our
approach is a simple blending of all unhighlighted colors
with some neutral color. Blending unhighlighted items
with a neutral color reduces their contrast and detail,
making the highlighted items more visually prominent
and unchanged.

Choice of the neutral blending color is somewhat
application-dependent. For most applications a light gray
is very effective. For applications which are monochrome,
a pastel color is effective because the unselected items
assume a hue that contrasts with gray levels of the
selected items.

0.25

0.9

0.25

I)I
0.9

Figure 1 - Varying the highlight intensity

527

I

! .

’ (.

t

”

,

I

The parameters to our function are the blending color and
the highZight intensity. Highlight intensity is a user
controlled parameter ranging from 0.0 (no highlighting) to
1.0 (only selected objects can be seen). Our experiments
showed that users must have control of the highlighting.
First, because user goals may vary, and secondly, because
various application objects have different levels of visual
strength. Compare the highlighting intensities in the right
column of figure 1 to those in the left. Note that the
polygon on the right stands out as a highlight much
sooner than the “n” on the left.

The effect of the highlighted polygon is much more
striking on a large display than in the small images of
figure 1. The “n” in a large image must show very high
highlight intensity before it is visible at all. Note,
however, that high highlighting intensity makes the
unhighlighted objects much harder to work with. The
intensity parameter gives the user the necessary control to
adjust to the task at hand.

Given the two parameters (BC. and HI) and a color for an
unhighlighted object(OC) the formula for the blended
color is BC+II + 00(1-HI).

Multiagent highlight

The blending method serves to bring highlighted objects
into the foreground This does not deal with the problem
of discriminating among multiple agents. Solutions to
this probIem will depend on whether there are 2-3 agents,
lo-20 agents, or lOOi- agents. Our conclusion is that
other than outright labeling of every highlighted item
with the identity of the responsible agent, we could not
visually encode more than about 5 agents at a time. We
concluded that there would need to be a legend somewhere
that related the visual encoding to information about the
actual agents, be they people or software. Such a legend
could group together many agents in a single encoding and
all the encodings would be under user control

The problem of visual conflict between the agent
identification and the visual encoding of application
information is mitigated by the way in which the blending
algorithm works. By blending colors of all unhighlighted
objects towards a single color, the color space of the
unhighlighted area is sharply restricted. (See figure 1.) By
placing our agent encoding in the unhighlighted area we
can use a portion of the color space that is distant from
the blending color and thus separate the agent indicators
from application information. As with the simple
highlight the visual contrast of the agent indicators with
application data will increase as the highlight intensity is
increased.

Our agent encoding technique computes a rectilinear
region for the selected area of each agent, expands that
region by a small number of pixels, and then draws that
region’s border using the color associated with the agent.
By expanding the region before drawing it, we push the
agent encoding away from the highlighted objects so that
it does not interfere with them and out into the blended
areas where the visual contrast will be better. If the
blending color is a gray (which we have found effective in
most cases), encoding agents with color that have above
average saturation works very well.

One of the problems with multiagent pointing is that
more than one agent may point at the same object. The
agent indicators (in our case the borders) may overlap and
obscure each other. We have accommodated this by
expanding each agent’s region by a different number of
pixels. This prevents the overlap and preserves the
encoding information. The end result is shown in figure 2.

Figure 2 - Multiagent Selection

THE NATURE OF POINTING

The purpose of this work is to allow multiple agents to
draw a user’s attention to various items in the workspace.
In most real applications this has both a local and a global
aspect, due to the fact that real applications typically
occupy a visual space much larger than is available on a
computer screen. Local pointing involves highlighting
those currently visible objects to which the agents want to
draw attention. The highlighting techniques described
above deal with the local pointing problem.

The global pointing problem involves drawing the user’s
attention to objects that are not currently visible. Global
pointing depends on the organizational model for the
information and how the user will navigate the
information space. The simplest of these is the infinite
2D surface with scrolling as the navigation technique.
Techniques for pointing in this model have already been
developed including scroll-bar variants [5,6] and radar
views [4]. A software architecture for integrating these
techniques with any application is discussed later in this
paper.

528

Other information ora&zations include the zooming
model of Pad++- [11. Hierarchic or linked organizations are
also used as in the Macintosh Finder or the workbook
sheets in the new versions of Microsoft Excel. The
zooming model shares most of the features of the
scrolling model with the exception of objects that am
“zoomed” to smaller than a pixel. Zoomed objects that ate
outside the currently visible range can be dealt with just as
with other “scrolled-away” objects. By assi,tig any
selected object a minimum region of 1 pixel and then
expanding that region by several pixels, even objects that
are zoomed into invisibility can be highlighted.

In hierarchic organizations, there is always a visible object
that serves as a surrogate for a group of hidden objects. In
the Finder, for example, the surrogate for a hidden
&rectory is the folder icon. In the Excel workbook there is
a tab across the bottom for each hidden sheet. If objects
inside of a hidden group are selected by an agent, the
surrogate object can be highlighted using the techniques
already described For example, a directory folder can be
highlighted if any of its contents are being referenced by
an agent. The user thus has sufficient information to
locate the highlighted material.

All of the above models for information can use the
blended highlight with other global pointing widgets to
provide a complete pointing mechanism for multiple
agents. The one exception to this is the searchable space.
This is a space such as a database that has no visual
organization. Queries are created and results are returned
but there never is any global geometry assigned to the
entire space of information. No pointing technique is
useful in this case. In such cases agents must describe
possible queries that would return the selected
information. Such techniques are important but outside
the scope of this work.

A notable hybrid is the World -V&de Web. For the web as
a whole, there is no global visualization. The WWW in a
global sense is a searchable rather than a navigable space.
.On the other hand, once a page is selected a local traversal
tree of direct and indirect links from that page can then be
treated using the techniques described above. Agents will
then have an organization into which they can point and
techniques for doing the pointing.

IMPLEMENTATION OF POINTING
There are several problems in actually implementing these
pointing techniques on top of any application in the
interactive environment. Our goal is to require only
minimal changes to the applications and that these simple
changes suffice for a wide range of agents and interactive
services.

The first and most important problem is to actually define
what a pointer is. For pointers to have any real meaning
they must be defined in terms of the semantic structure of
the application. For our highlighting techniques to work
this semantic structure must be mapped onto the objects
drawn on the screen by the application. Having defined the
nature of a pointer we need algorithms to implement the
highlighting without requiring a rewrite of all
applications. Lastly we need to extract geometry
information about the highlighted regions so that agent
indicators and other global pointing widgets can be
implemented.

Semantic / Surface Mapping

Every interactive application has some form of the
architecture shown in figure 3. In most such applications
this architecture is replicated for each independent view of
the model, or views of different models.

Reference and Change a

e

Figure 3 - Application Architecture

The goal of the application is to present and manipulate
the information in the semantic model. For a given view,
there is code that renders some portion of the semantic
model onto an infinite 2D surface. Scrolling or other
navigation techniques are used to present this surface on
the limited screen space available to the application. As
part of this renderin, a operation, the application usually
traverses the semantic model in a semirecursive fashion,
extracting information from the model and transforming it
into drawing primitives on the surface.

The user in turn generates inputs in terms of the images
presented on the surface. The application must translate
these surface-based inputs into references to objects in the
semantic model and changes to that model. Frequently
such manipulations are defined in terms of a selected
object or objects (as indicated by the circle in figure 3).
These selected objects are the raw material for our
pointers.

The problem is to define application-independent
references to such selected objects so that external agents
can save, manipulate and highlight the referenced objects.
When the rendering code traverses the semantic model, it

PAPERS

i ._.- ,-_ _,.. ,I-. .;pt;m.L Y.. ,-.- = .““A’-.A’;.‘.l- .__‘,__._ ;.,.

CHI 98 l 18-23 APRIL 1998

generates a tree traversal of the information regardless of
the actual structure of the model. Different views will take
different traversals and thus generate diierent trees. Our
approach is to capture the structure of this traversal tree
during the rendering process so as to create a map between
this traversal tree and geometric objects on the surface.

As the model is being traversed, the rendering software
moves from object to object by following links of
various sorts. Each such link can be identified by a textual
name or an integer index. Such identifiers need only have
meaning to the application itself.

Defining pointers

Note that pointing, highlighting and selecting operations
are all defined at the surface where the user can perceive
them. Because of this surface orientation we use the
renderer’s traversal tree as our model description rather
than the full generality of the semantic model’s structure.
Based on this, a given object can be identified by the path
from the root of the traversal tree to the desired object (as
shown by the darkened line in figure 3). A simple object
pointer, therefore, is a sequence of integers or strings
defining the links between objects in the rendering
traversal. Exactly what these strings or indices are and
how they relate to the underlying structure of the
application is unimportant, provided they arc used
consistently by the application. This approach for defining
pointers is similar to our earlier work on semantic
telepointers [S].

In many cases an agent will need to reference more than
one object. A spell checker, for example, must reference
all misspelled words. We extended our referencing
mechanism to combine the paths of all selected objects
into a single tree by combining paths with common
prefixes into the same subtree. Some nodes in the tree can
also represent ranges of indices rather than individual
nodes for each index. This would be appropriate for the 3
consecutive days highlighted in the calendar application in
figure 2.

Capturing drawing calls

Having a representation for pointers that is application-
independent, our general tools need access to the drawing
behavior of the application. We exploit a technique
pioneered in [2] of using specialized drawing classes. In
most modem windowing systems, the actual mechanisms
for drawing into a window are isolated from the
application by an abstract interface. This may be object-
oriented as in the case of Java’s Graphics class or
SubArctic’s drawable class, or it may be pseudo-
object-oriented as in the Microsoft Windows device
context.

By substituting our own class for the standard drawing
class, we capture all.of the calls that the application’s
rendering code may generate. This provides us with
complete control over the application’s drawing behavior
without interfering with the application’s normal
implementation. We must, however, impose our first
requirement on the application - it must be capable of
rendering its entire 2D surface rather than just the portion
in the visible window. We need access to the entire surface
so that we can extract the global pointing information for
showing where scrolled-away items can be found. The
inefftciencies of requiring an application to render
everything rather than just the portion visible in the
window can be mitigated by visible bounds techniques. If
the application will interrogate the clipping rectangle, it
can optimize what sections of the surface should be drawn.
By setting the clipping rectangle to the size of the whole
surface we can capture the entire drawing area. By
invoking an application’s Redraw or Paint method with
one of our specialized drawing classes, we can capture any
information about the application’s visual presentation
while imposing minimal changes on the application’s
architecture.

Capturing the semantic map

Simply capturing drawing calls is not sufficient to
implement the highlighting techniques because they
contain no information about which drawn objects are
mapped to which semantic objects in the rendering
traversal tree.

To accommodate this need we have added three calls to the
drawable class. They are:

GroupStart (String Name, String Type)
GroupStart(int Index, String Type)
Groupmd ()

As part of its rendering algorithm, an application is
expected to call GroupStart before drawing
information from a particular object. The object can be
identified by a string name or by an index depending on
the GroupStart method used. In addition to identifying
the object, a string type for the object can also be
supplied. The type information is not used by the
highlighting mechanism but is helpful for other surface-
based techniques that we are developing. After an object is
drawn, GroupEnd is called. The calls to GroupStart
and GroupEnd can be nested to any depth. Example
pseudo-code for drawing the calendar application on a
surface S is shown in figure 5.

530

CHJ 98 e 18-23 APRIL 3 998 PAPERS ! .

For each month M
{ S, GroupStart (N-name, Wonth”) ;

S-draw ihe month name
S, draw the days of the week
For each day D in $1
{ S. GroupStart (D. date, “Day”) ;

S _ draw day rectangle
S.draw day border
S. draw the date
S _ GroupFnd () ;

&Groupmd() ;
1

Fignre 5 - Example Calendar Rendering Code

These calls provide all of the information necessary to
capture the rendering traversal tree. Including
GroupStart and GroupEnd calls in the rendering code
is the second major implementation requirement that we
impose on an application. We do not consider this
excessive, however, because such calls are relatively
straightforward to add to existing rendering code with
reasonable structure. It is far easier, for example, to
include the GroupStart/GroupEnd calls than to
implement Cut/Copy/paste or OLE objects. These calls
provide a link between surface geometry and the
underlying model structure. A major part of our future
research will leverage this surface/model mapping to
support more powerful agent behavior than simple
pointing.

Implementing highlighting

Based on the machinery described above, we can define a
special HighlightSurface class which is a subclass
of drawable. (We are using SubArctic. Similar
techniques will work in most other object-oxiented
windowing systems.) The HighlightSurface class
passes all drawing routines on to drawable with the
exception of the calls to set colors and the GroupStart
and GroupEnd calls. The purpose of
HighlightSurface is to draw the application
information using blended highlights. The global pointing
widgets and the agent identifiers are handled separately. In
order to draw correctly, the HighlightSurface class
must have a reference to all objects being highlighted, a
blending color, and a highlight intensity.

Whenever the application redraws itself as part of its
interactive behavior, it is given a HighlightSurf ace
instead of a drawaMe. At each GroupStart call the
surface will compare the name or index to the reference
tree to determine if this group is selected or not. The
selected state and position in the reference tree before
GroupStart was called are pushed onto a stack. If the
group is selected, then the current dmw color, as requested
by the application, is passed on to the drawable. If the

group is not selected the draw color is blended with the
blend color as described above. The resulting blended color
is passed to the drawable instead of the application’s
requested color. When GroupEnd is called the stack is
popped and the color settings restored to what they should
be given the selected state of the enclosing group. The
application rendering code never knows that highlighting
has been done. This technique produces the drawings in
figure 1. This blended highlight technique has very
minimal impact on the drawing speed of the application.

Capturing the selected region

In order to draw the agent identifiers and to implement the
global pointing widgets, we need to compute a geometric
region on the surface for all selected objects identified by a
given reference. Note that a reference may point at
multiple objects, and that a given object may appear on
the surface in multiple places.

As with blended highlights, we create a subclass of
drawable C&d SelectedRegion. The
SelectedRegion class does not pass any of its calls
on to drawable. As with Highlightsurface, the
SelectedRegion must be given a reference tree. To
compute the region geometry corresponding to the
reference tree, the Paint or Redraw method on the
application is called wivith a SelectedRegion for its
drawable. The clipping rectangle associated with
SelectedRegion is the size of the whole surface. The
SelectedRegion initializes a Region object to
empty. The Region object collects the bounding region
for all selected groups. Each GroupStart is compared
with the reference tree to determine selectedness. Whenever
a drawing call is encountered within a selected group, that
drawing primitive’s bounding region is unioned into the
Region object. Any drawing call encountered in an
unselected group is ignored. At the end of this process the
Region object contains the bounding region for all
selected groups.

Executing the redraw code for an entire surface just to
compute the bounding region for a single object can be
very inefficient. For this reason the GroupStart
method returns true if the named or indexed group is of
interest and false otherwise. When drawing into the
Highlightsurface, GroupStart always returns
true because all groups need to be drawn. The
SelectedRegion, however, returns false for any
group that does nof contain selected objects. The pseudo-
code of figure 5 can be optimized to that shown in figure
6. This structure will minimize the cost of computing
regions.

.

531

PAPER5 CHI 98 l 18-23 APRIL 1998

For each month 14
1 if (S.GroupStart (M-name,

“Month”))
{

S-draw the month name
S-draw the &ys of the week
For each day D in 14
1 if (S.GroupStart (D-date,

“Day” 1)
1

S.draw day rectangle
S.draw day border
S-draw the date

I
S . GroupEnd () ;

1
1
S . GroupEnd () ;

I
Figure 6 - Optimized Rendering Code

One problem with computed highlight regions is that they
may move as the application’s data is changed. We can
track such changes in the same way that display changes
are handled. When application data changes, the rendering
system will damage the changed area causing the
windowing system to request that those areas be repainted.
Similarly such damage information can be used to
recompute reference regions so that they are up to date.

Once a region has been computed for a given agent, the
region is expanded by a specified number of pixels and its
border drawn in the agent’s color to produce the agent
indicator. This is done for all agents after the highlight
drawing has been done. Again the application knows
nothing about any of this being done other than the
successive calls to its drawing routine.

BOOKMARKS FRAME DEMO

In order to test the efficacy of our architecture we assigned
students in our lab to implement 4 different applications
using the standard SubArctic toolkit. They were: a
drawing application, an appointment calendar, a tabular
data presentation and editing tool, and a map-based
planning application. Those implementing the
applications did not know about the highlighting
algorithms.

We then built a simple framework that supports multiple
bookmarks, shown in figure 7. The essence of the
framework is that any object selected by any application
embedded in the framework can be saved as a bookmark or
added to an existing bookmark. The multiple bookmarks
serve as surrogates for multiple agents, which we did not
implement.

The test was to take the existing applications and embed
them in the bookmark framework, thus adding the
multibookmark pointing feature to any application.
Because we require some modifications to application
code, we wanted to test how long it took to modify an
application to work within the framework. Once the
framework itself was debugged, each application took less
than one man-day to embedding in the framework. The
last application took less than 30 minutes to convert.

The framework required that the application implement
four new methods:

interactor getSurfaceInteractor();
Rectangle getViewableArea();
TRef getModelRef () ;
void scrollSurfaceInteractor

(int x, int y) ;

Because we were embedding arbitrary applications into the
framework, the first two methods are required so that the
framework can separate controls and buttons from the
working surface of the application. We decided that
applications would use their own selection mechanisms
which the bookmark facility exploits by requesting a
reference to the cunently selected object. The fourth
method allows global pointing widgets to force the
application to scroll to a particular area in response to user
inputs. Such coercion only occurs at the user’s request.

The bookmark framework provides controls for the blend
color and highlight intensity. The user has direct control
over the highlight intensity using a scroll bar.
The bookmark framework substitutes a
HighlightSurf ace whenever the application is drawn
and uses the blend color and intensity to provide the
highlighting. When necessary, a SelectedRegion is
used to compute the region for each bookmark. Each
bookmark border is then drawn clipped to the viewable
area rectangle. This implement the highlighting required
for the bookmarks.

In addition the bookmark frame provides three global
pointing widgets. By projecting the bookmark regions
along X and Y, we can define widgets that provide
highlights along the vertical and horizontal axis.
Greenberg reports that these are not very effective for
collaborative’ use; however, the vertical version can
implement the “wear marks” techniques of Hill and Hollan
[5]. We find that when the total surface is very narrow in
one dimension, the global pointing widget of the other
dimension is very effective. In addition to these projected
widgets there is a rectangular “mdar view” [4] which
represents the entire surface area in miniature with the
highlight regions drawn in their agent identification

colors. Clicking on any of the global pointing widgets
will force the application to scroll so as to make the
indicated area visible. This supports navigating directly to
highlighted areas. All of these global pointing widgets use
the selected regions calculated from the drawing surface.
These widgets are also independent of bookmarks and can
be used by any agent needing global pointing.

SUMMARY
We have defined a mechanism for visually highlighting
any object or objects in any application using our blended
highlight technique. We also identify the responsible
agent using our colored region borders. Selected regions
calculated from the drawn images also drive the global
pointing widgets. The heart of our algorithms are in the
model/surface mapping information provided by the
GroupStart and GroupEnd calls. These deliver
semantic information to the surface where external agents
can support the end user’s work.

REFERENCES
1, Bederson, B. and Hollan, J. Pad++ A Zooming

Graphical Interface For Exploring Alternate Interface
Physics. UIST ‘94, @ov 1994), 17-26.

2. Edwards, W. K., Hudson, S. E., Marinacci, J.,
Rodenstein, R., Rodriguez, T., and Smith, I.
Systematic Output Modification in a 2D User
Interface Toolkit. UIST ‘97, (Ott 1997).

3. Fischer, G., McCall, R., and March, A., Design
Environments for Constructive and Argumentative
Design. CHZ ‘89, (May 1989), 269-279

4. Gutwin, C., Roseman, M., and Greenberg, S. A
Usability Study of Awareness Widgets in a Shared
Workspace Groupware System. CSCW ‘96, (Nov
1996), 258-267).

5. Hill, W. C., and Hollan, J. D. Edit Wear and Read
Wear. Human Factors in Computing Systems (CHZ
‘92),(May 1992), 3-9.

6. Olsen, D. R., Bookmarks: An Enhanced Scroll Bar.
ACM Transactions on Graphics. (July 1992).

.7. Olsen, D. R., Ahlstrom, B., Kohlert, D., Building
Geometry-based Widgets by Example. CHZ ‘95, (May
1995).

8. Olsen, D. R., and Rodham, K. Smart Telepointers:
Maintaining Telepointer Consistency in the Presence
of User Customization. ACM Transactions on
Graphics (July 1994)

,yNz5 f J 1

Bookmark Legend

Horizontal Global
__I_ Pointers

Fi,pue 7 - Bookmark Framework

