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Abstract—A goal of human-robot interaction is to expand the 

capability of human beings so that they can control multiple 
robots simultaneously. This provides leverage for human 
attention beyond single robot interaction. The number of such 
robots that can be operated is called the fan-out of a human-
robot team. We define the concepts of neglect-tolerance as a 
measure of autonomy and interaction-effort as a measure of 
required human attention. A model for fan-out is presented that 
predicts a human’s ability to control multiple robots. We validate 
this model using robot simulations and user studies. Using the 
validated model we demonstrate enhanced task performance on 
physical robots as predicted by the model. 
 

Index Terms—human-robot interaction, multiple robots, fan-
out. 

I. INTRODUCTION 

For the foreseeable future, robots will not be fully autonomous 
but will be guided and directed by humans. The goal in our 
lab is to find ways to expand human ability to control robots. 
In particular we want ways to leverage human attention to 
accomplish tasks more effectively. One approach is to allow a 
human to drive many robots simultaneously. In pursuing this 
goal we need metrics to evaluate the effectiveness of a human-
robot team. Is the interface responsible for the performance or 
the robot’s autonomic capabilities. The difficulty with such 
evaluations is that the autonomy of the robot gets intertwined 
with the quality of the user interface. We want to tease these 
apart so that we can clearly identify where the improvements 
or difficulties are coming from so that designers and 
researchers can more effectively focus their efforts.   
 
In this paper we look at a particular aspect of HRI, which is 
the ability for an individual to control multiple robots 
simultaneously. We refer to this as the fan-out of a human-
robot team. The fan-out of a human-robot system is the 
average number of robots being using simultaneously. We 
hypothesize that the following fan-out equation holds, 
 

FO=NT/IT 
 

where  
FO=fan-out or the number of robots a human can control 

simultaneously, 
NT=neglect tolerance or the time that a robot can operate 

without human intervention, 
IT=interaction time or the time that it takes for a human to 

interact with a given robot. 
 

Suppose that a robot can, on the average, operate for 10 
seconds without human intervention and it takes only 2 
seconds for the user to decide what needs to be done and give 
the robot new instructions. This would mean that the user 
would have 8 out of every 10 seconds available to devote 
attention to other work. In the case of a multi-robot team, this 
attention could be devoted to other robots. If each robot takes 
2 seconds of attention and can then run on its own for 8 more 
seconds, then a user should be able to operate 5 robots 
simultaneously. This is the rationale for our fan-out model of 
multi-robot interaction. 
 
In this paper we also describe how this model can be used to 
compute metrics of the effectiveness of the human-robot 
interface. We describe how we have validated the model using 
a simulated robot world and lastly we describe how the model 
was applied to physical robots being driven by novices using 
two different third-person “view from above” interfaces. 

II. PRIOR WORK 
Others have done work on human-robot interaction. Sheridan 
has outlined 5 levels of robot control by users [14]. The levels 
range from teleoperation, where the user is directly engaged 
with the actuators of the robot, through various levels of 
computer intervention between the user, the sensors and the 
actuators, to full autonomy with users merely setting very 
high-level goals.  Fong and Thorpe [8, 9] demonstrated 
collaborative control where the human and the robot share the 
initiative, with the robot seeking guidance when needed. 
These with a variety of other approaches are characterized by 
their system architecture. Although human-robot interfaces are 
provided, there is little study of the nature of that interface nor 
on how to evaluate the quality of the interface. 
 
There have been a number of proposals for new modalities for 
controlling robots including haptics, gestures and PDAS [7]. 
Others have looked at the visualization and context memory 
problems that arise when driving robots. The Egosphere is one 
such solution [6]. 
 
There is also a great deal of work on using multiple robots on 
a task. There are fully autonomous swarming approaches such 
as in Bruemmer, et al [3]. These have very little human 
intervention because the desired task is preprogrammed. Other 
autonomous robot teams have done janitorial tasks, box 
pushing and earth moving [12, 13]. All of these teams have 
used very little human intervention. Other multi-robot systems 
have robots operating in formations [2, 4, 16] or according to 
predefined deployment behaviors [15]. These approaches 
allow users to direct the work of a number of robots 



  

simultaneously. Fong et. al. [10] point out the problems with 
dividing human attention among multiple robots and propose 
a collaborative control model for driving. In essence their 
proposals increase the neglect and activity time of the robots 
to achieve higher fan-out. Others have used a “select and 
command” model for controlling multiple robots [11].  
 
However, none of these have been carefully evaluated as to 
the advantages or decrease in effort afforded by the various 
user interface designs. In most cases the control architecture is 
intertwined with the human-robot interface making it hard to 
distinguish which part of the solution is contributing to 
progress. In this paper we describe a model for isolating and 
measuring the human-robot interface for teams of robots. 

III. A SIMPLE WORLD 
To clarify the concepts behind our metrics we pose the simple 
robot world shown in figure 1. In this world, the user gives the 
robot a distance and a direction. The neglect tolerance of the 
robot is the amount of time that the user can ignore the robot 
and pay attention to others. From the diagram it would seem 
that this time would be the average time required to travel the 
distance of each leg of the planned course.  However, the 
robot may be only partially capable of carrying out the user’s 
instructions. Faulty odometry or lack of wheel traction may 
cause the robot to head into the trees and stop prematurely or 
may allow the robot to go beyond the end point and into the 
small cul-de-sac beyond. If the robot has very poor “crash 
detection” the user may give it much shorter, more cautious 
goals to prevent catastrophes. Thus the “trustability” of the 
robot also factors into to how long it can actually be 
neglected.  
 
In most cases, increasing the intelligence of the robot can 
increase its neglect time. For example, adding simple sonar 
sensors to the robot to give it primitive obstacle avoidance 
would increase the user’s ability to trust the robot (it is not as 
likely to hit a tree) and would allow the robot to proceed 
through more complex paths without human intervention.  
 
Obviously neglect tolerance is a simplification of many 
interrelated factors. However, it does provide us with an 
overall measure of the autonomy level of the robot in a given 
task situation.  
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Fig 1. A simple robot world where the robot can be given a direction and a 
distance. The human must intervene at each leg of the journey or when 
premature failures occur. 

 
A second factor in our fan-out model is the interaction time. 
This is also a simplification of many interrelated issues. The 
interaction time is the time it takes for a human to interact 
with a robot in order to give a single specific instruction. 
There are many components to interaction time most of which 
cannot be directly measured. The simplest measure of 
interaction time would be the amount of time required to 
express a new speed and direction for the robot. However, this 
is only part of the interaction time. If the robot is not trusted, 
then the user must expend time monitoring the status of the 
robot to make certain nothing bad happens. If the robot has no 
path planning ability then the user must spend more time 
planning feasible paths through the world and must make 
more interventions to accomplish the goal. As we introduce 
multiple robots to the user there is the thinking time required 
to switch contexts between robots. Most of the planning, 
monitoring and context acquisition time cannot be directly 
measured. This “unmeasurable” effort is a key challenge in 
developing our desired metrics.  

IV. MEASURING HUMAN ROBOT INTERACTION 
Given the definition of our model, we now look at how to use 
the model to measure the quality of the human robot interface. 

A. Measuring Neglect Tolerance 
The first step is to measure the neglect tolerance. Our first 
approach to measuring neglect tolerance was to randomly 
place a robot in a world and randomly choose a goal for the 
robot. We then measure the average time the robot can run 
before it stops making progress toward its goals. This turned 
out to be a very ineffective technique for measuring neglect 
tolerance. The first problem is that with real physical robots 
this becomes very time consuming. Secondly this approach 
does not take into account the trustablity of the robot. Our 
experiments have shown that this level of trust is very 
important to neglect tolerance.  
 
 
 
 
 
 
The measure that we have found most effective in measuring 
neglect tolerance is activity time. Activity time is the time 
between when a the user gives a command to the robot and 
one of the following occurs:  

- the user gives a new command, 
- the robot stops making progress towards the goal, 
- or the robot reaches the goal. 

We can give a user a team of robots and a task and then we 
can measure the average activity time of all of the robots. This 
will give us a good overall measure of the autonomy of those 
robots.  
 

B. Measuring Fan-out 
The most intuitively direct approach to measuring fan-out is 
the effectiveness plateau method. In this method we give a 



  

user a task and a number of robots. We then measure the 
user’s performance (time to complete or number of targets 
identified). We then increase the number of robots with more 
experiments until performance does not improve. This plateau 
in performance defines the maximum number of robots that 
can be effectively used. This approach is intuitively very 
attractive, but infeasible in practice. The problem is that to get 
statistically significant data one must make many runs with 
many users with many different numbers of robots.  
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Fig 2. Measuring Fan-Out by repeated experiments increasing the number of 
robots until the performance does not increase with the addition of new robots. 
 
We have found a more practical measure of fan-out to 
measure the number of robots making progress towards a goal 
at any point in time. We then average this over many time 
samples within a given experiment. For this measure to be 
used we need a predicate for “progress”. A simple predicate is 
that the robot is moving and therefore making progress. 
However, if the robot is caught in some cycle it may move for 
a long time without making progress. Another predicate might 
be “getting closer to a goal.” However, in some complex 
environments, the only feasible path to a goal may involve 
moving away to get around an obstacle. A fallback position is 
to manually code videotapes of the experiments to allow 
humans to judge “progress.” Assuming we have a “making 
progress” metric for our task we can then give the user many 
robots and measure the average number of active robots at 
each time sample. 

C. Measuring Interaction Effort 
Measurements of neglect time and fan-out are useful in their 
own right, but what we really want is a measure of interaction 
effort. We do this by solving the fan out equation for 
interaction time (IT) giving 
 

IT=AT/FO 
 

However, because we are approximating neglect with activity 
time and approximating fan-out with average number of active 
robots, we do not believe that this equation will produce 
accurate interaction times. However, we do believe that this 
will produce a metric that can be used to compare two 
interfaces. We replace interaction time with a unitless measure 
called interaction effort (IE).  
 

IE=AT/FO 
 

For a given human-robots team we can measure average 
activity time, average number of active robots and then 
compute interaction effort. We can then change the user 
interface, perform experiments to give us a new interaction 
effort and measure any improvement. We thus have a 
technique for measuring the improvement in a human-robot 
interface. 

D. Validating the Model 
An unsettling feature of computing interaction effort from 
activity time and fan out is that it is an indirect measure 
computed from a model that seems rational, but is not 
necessarily valid. By computing rather than measuring one of 
the unknowns in the equation we loose our ability to verify its 
validity. Our fundamental problem is that interaction effort is, 
to a large degree, unmeasurable. Much of the effort goes on 
inside of the users head. The overt activities of operating the 
interface are generally only a minor part of the effort of 
controlling a team of robots. Before we can use this metric, we 
need a way to validate the model. 
 
To illustrate our validation approach, suppose one built a set 
of robots and applied them to a task. Experiments are 
performed to measure AT and FO from which IE is computed. 
Reviewing the performance of the robots, the designers 
improve the obstacle avoidance of the robots, but do not 
change the human-robot interface. In this situation AT will go 
up because the robots can run more independently. FO will 
also go up because the user can drive more robots. If IE is 
really a valid measure of the human-robots interface then it 
should not change if the interface did not change.  

V. ROBOT SIMULATIONS 
To validate our fan out model we chose robot simulations 
rather than real robots. This allows us to more carefully 
control the experiment. The use of real robots will introduce 
many factors of robot reliability and terrain/task irregularity. 
Real robots would be better for actual measurements, but not 
as effective at validating the model due to numerous 
uncontrollable variables.  
 
There is one way in which the real world differs sharply from 
our simulated world. In the real word, robots crash into 
obstacles, fall into holes, and run into each other. Safety is a 
real issue and lack of safety reduces the user’s trust. As 
discussed earlier reduced trust leads to reduced activity times. 
In our simulations, robots never crash or fail therefore trust is 
higher than reality. However, we believe that this will be 
reflected in different activity times and should not affect the 
validity of the fan-out equation. 
 

A. The task 
For our fan-out experiments we chose a maze-searching task. 
We built a random maze generator that can automatically 
generate tasks of a given complexity. We defined task 
complexity as the dimensions of the maze, density of obstacles 
and number of targets. Using our random maze generator we 
were able to create a variety of tasks of a given complexity. 



  

After random placement of obstacles and targets the maze was 
automatically checked to make certain that all targets were 
reachable. Our measure of task effectiveness was the time 
required for all targets to be touched by a robot.  
 
To validate our fan-out model we created uniform tasks with a 
uniform user interface. What varies is the intelligence of the 
robots and their neglect time. If the fan-out equation holds, 
task times, neglect times and fan-out numbers will vary with 
the intelligence of the robots, but the interaction time should 
remain constant because the user interface is constant. 
 
Figure 3 shows our maze running application and its interface. 
The users control the robots by dragging a goal location out in 
front of each robot. The robots attempt to reach the goal  
 

 
 
Fig 3. Driving robots(circles) through a maze to seek targets (Xx). User 
control is by dragging the square associated with each robot to set a short term 
goal for the robot. 
 
In our initial experiments, users would visually solve the maze 
problem and then “micro-manage” the robots to get to the 
targets. For most of our tests we used the world shown in 
figure 4 where any area that has not been “seen” by a robot is 
obscured. This makes the task more of a robot control and 
space coverage task than a visual maze-solving task. 
 

 
 
Fig 4. Obscured maze world. Only areas “seen” by a robot are shown. 
 

B. Three types of robots 
To test our fan-out theory of constant IE for a given user-
interface we developed three types of simulated robots. The 
first type (simple) heads directly towards its current goal until 

it reaches the goal or runs into an obstacle. This is a relatively 
simple robot with little intelligence.  
 
The second type (bounce) bounces off obstacles and attempts 
to get closer to the goal even if there is no direct path. It never 
backs up and thus gets trapped in cul-de-sacs. The bouncing 
technique solves many simple obstacle avoidance problems 
but none that require any global knowledge. This robot stops 
whenever it cannot find a local movement that would get it 
closer to the goal than its current position. 
 
The third type of robot (plan) has a “sensor radius”. It 
assumes that the robot can “see” all obstacles within the 
sensor radius. It then uses a shortest path algorithm to plan a 
way to reach the point on its sensor perimeter that was closest 
to the goal. This planning is performed after every movement. 
This robot stops whenever its current position is closer to the 
goal than any reachable point in its sensor perimeter. This 
robot can avoid local dead-ends, but not larger structures 
where the problems are larger than its sensor radius. 

C. User Tests on the Simulation 
In attempting to perform fan-out tests we quickly learned that 
subject motivation has a lot to do with fan-out measurements. 
Simultaneous control of multiple robots requires more intense 
mental effort than controlling one. Unmotivated subjects tend 
to resist making the effort. In a real search and rescue 
scenario, where lives are at stake, such motivation will be 
much less of an issue. To overcome the motivation problems, 
we held a series of races with cash prizes for the first, second 
and third place winners in each race. For the most part this 
resolved the motivation issues.  
 
In our first race there were 8 participants all running 8 races 
using the obscured worlds. The density of obstacles was 35% 
with 18 robots available and 10 targets to find. We ran 2 races 
with simple robots and 3 races each for the bounce and plan 
robots for a total of 64 trial runs. The measured fan-out and 
activity time along with the computed interaction time is 
shown in figure 6. Analysis of variance shows that there is no 
statistical difference in the interaction times across the three 
robot types. This validates the fan-out equation. 
 

Robot Type Mean 
Fan-out

Mean 
Activity Time 

Computed 
Interaction Effort 

Simple 1.46 4.36 3.06 
Bounce 2.94 7.82 2.77 

Plan 5.11 14.42 2.88 
 
Fig 5. Measures of robot performance with three types of robots and the same 
user interface with 35% obstacles in the maze. Fan-out is the average number 
of robots active at any one time. Activity time is the average amount of time 
that a robot was running without stopping or human intervention. 
 
Because our maze worlds are automatically generated we can 
control the complexity of the problem that the human-robot 
team must solve. We held a second competition with 8 
subjects and 8 races where the obstacle density was reduced 
from 35% to 22%. With a less complex world the activity time 



  

should go up. As the model predicted, the activity time rose as 
robots became more independent due to the reduced 
complexity of the world. However, fan-out also rose. The 
computed interaction effort is statistically unchanged from the 
more complex mazes. This is consistent with the fact that the 
interface was unchanged. Again the model is validated.  
 
We ran a third competition where the world complexity was 
the same, but the interface was changed to a lower resolution. 
The lower resolution interface required the users to scroll and 
thus was more cumbersome. The interaction effort 
measurements were sharply higher as the model would 
predict. 

VI. ACTUAL ROBOT EXPERIMENTS 
To test our model on actual robots we created an environment 
where 4 small robots are placed in a maze with target 
locations for each robot, as shown in figure 6. The goal of the 
user is to get every robot to its appropriate target. 
 

 
 
Fig 6. Robot maze problem. User is controlling robots to reach their 
corresponding goal. Control is by dragging a short term target out in front of 
each robot. 
 
For this problem we had two control paradigms. The first was 
simple directional controls for each robot. These were 
represented by circles for each color of robot that would set its 
direction or stop. Our robots had no speed control. In this 
paradigm the user could control the direction of a robot and 
tell it to go. The users had to monitor the robots to make 
certain that they did not run into each other or the walls of the 
maze. The second control paradigm is shown in figure 6 
where the user can drag out short-range goals for each robot. 
A camera-based tracking system would then monitor each 
robot’s location and direct it towards its goal. The camera 
system was not capable of avoiding obstacles or other robots. 
The user had to do those tasks by setting a succession of 
achievable short-range goals. 
 
We had 18 users make test runs with both types of control. 
We counter balanced the order to eliminate learning effects 
between control types. We collected the fan-out, activity time 
and total task time for all of the runs. The statistics are shown 
in figure 7. With direction driving, a user could barely keep 
one robot operating at a time. With the camera controlled 
goal-seeking control, the fan-out rose to 2.2 robots operating 

at once. The activity time was also sharply higher because 
robots could operate without intervention for longer periods of 
time. Because of the parallelism that the camera-control 
offers, the total task time was almost ¼ of the time required by 
circle driving. Because the user was switching attention 
among multiple robots, the interaction effort to control the 
camera-controlled robots was slightly higher. In this case the 
fan-out model provides us with informative information about 
where the improvements are coming from. This is exactly 
what we wanted from our metrics. 
 
  Direction Camera
Average fan-out 0.93 2.20
Average activity time 1.89 5.27
Average task time 223.26 60.66
Computed interaction effort 2.02 2.39
 
Fig 7. Measurements of small robots in a maze using simple directional 
controls (Circle driving) and goal-based camera-managed controls (Camera). 
 

VII. CONCLUSIONS 
We can measure the parallelism in a human-robots team by 
measuring the fan-out, or the average number of robots 
making progress at any one time. We also measure the activity 
time or average time that the robot makes progress without 
human intervention. Using these two we compute interaction 
effort, which we can use to compare two systems to see if the 
user interface has improved. Our simulations and our robot 
experiments seem to bear out the hypothesis that the fan-out 
law holds and can pull out the human/robot contributions to 
task effectiveness. 
 
In working with our robots and the model we understand that 
these metrics sweep many diverse issues under the rug. 
However, they do allow us gage overall improvements and 
thus give us good system-wide measures of progress. 
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