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ABSTRACT 
A goal of human-robot interaction is to allow one user to 
operate multiple robots simultaneously. In such a scenario 
the robots provide leverage to the user’s attention. The 
number of such robots that can be operated is called the 
fan-out of a human-robot team. Robots that have high 
neglect tolerance and lower interaction time will achieve 
higher fan-out. We define an equation that relates fan-out to 
a robot’s activity time and its interaction time. We describe 
how to measure activity time and fan-out. We then use the 
fan-out equation to compute interaction effort. We can use 
this interaction effort as a measure of the effectiveness of a 
human-robot interaction design. We describe experiments 
that validate the fan-out equation and its use as a metric for 
improving human-robot interaction. 

Author Keywords 
Human-robot interaction, multiple robots, fan-out 

ACM Classification Keywords 
H5.2 – User Interfaces, I2.9 - Robotics 

INTRODUCTION 
As computing becomes smaller, faster and cheaper the 
opportunity arises to embed computing in robots that 
perform a variety of “dull, dirty and dangerous” tasks that 
humans would rather not perform themselves. For the 
foreseeable future robots will not be fully autonomous, but 
will be directed by humans. This gives rise to the field of 
human-robot interaction (HRI). Human-robot interaction 
differs from traditional desktop GUI-based direct 
manipulation interfaces in two key ways. First, robots must 
operate in a physical world that is not completely under 
software control. The physical world imposes its own 
forces, timing and unexpected events that must be handled 
by HRI. Secondly, robots are expected to operate 
independently for extended periods of time. The ability for 
humans to provide commands that extend over time and can 
accommodate unexpected circumstances complicates the 

HRI significantly. This problem of developing interfaces 
that control autonomous behavior while adapting to the 
unexpected is an interesting new area of research. 

We are very interested in developing and validating metrics 
that guide our understanding of how humans interact with 
semiautonomous robots. We believe that such laws and 
metrics can focus future HRI development. What we are 
focused on are not detailed cognitive or ergonomic models 
but rather measures for comparing competing human-robot 
interfaces that have some validity. In this paper we look at a 
particular aspect of HRI, which is the ability for an 
individual to control multiple robots simultaneously. We 
refer to this as the fan-out of a human-robot team. We 
hypothesize that the following fan-out equation holds, 

IT
ATFO =  

where  

• FO=fan-out or the number of robots a human can 
control simultaneously, 

• AT=activity time or the time that a robot is actively 
effective after receiving commands from a user, 

• IT=interaction time or the time that it takes for a 
human to interact with a given robot. 

In this paper we develop the rationale for the fan-out 
equation and report several experiments validating this 
equation. We show that the equation does describe many 
phenomena surrounding HRI but that the relationships are 
more complex than this simple statement of fan-out implies. 
We also describe the experimental methodologies 
developed in trying to understand fan-out. We present them 
as tools for evaluating and measuring design progress in 
HRI systems. 

The robotic task domain that we have focused on is search 
and rescue where robots must cover an indoor, urban or 
terrain environment in search of victims, threats, problems, 
or targets. Although we have restricted our work to this 
domain, we are hopeful that our methods and metrics will 
extend to other HRI domains. 

PRIOR WORK 
Others have done work on human-robot interaction. 
Sheridan has outlined 5 levels of robot control by users 
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[14]. The levels range from teleoperation, where the user is 
directly engaged with the actuators of robot, through 
various levels of computer intervention between the user, 
the sensors and the actuators, to full autonomy with users 
merely setting very high-level goals.  Fong and Thorpe [8, 
9] demonstrated collaborative control where the human and 
the robot share the initiative, with the robot seeking 
guidance when needed. These with a variety of other 
approaches are characterized by their system architecture. 
Although human-robot interfaces are provided, there is little 
study of the nature of that interface nor on how to evaluate 
the quality of the interface. 

There have been a number of proposals for new modalities 
for controlling robots including haptics, gestures, PDAS 
[7]. Others have looked at the visualization and context 
memory problems that arise when driving robots. The 
Egosphere is one such solution [6]. 

There is also a great deal of work on using multiple robots 
on a task. There are fully autonomous swarming approaches 
such as Bruemmer, et al [3]. These have very little human 
intervention because the desired task is preprogrammed. 
Other autonomous robot teams have done janitorial tasks, 
box pushing and earth moving [12, 13]. All of these teams 
have used very little human intervention. Other multi-robot 
systems have robots operating in formations [2, 4, 16] or 
according to predefined deployment behaviors [15] These 
approaches allow users to direct the work of a number of 
robots simultaneously. Fong et. al. [10] point out the 
problems with dividing human attention among multiple 
robots and propose a collaborative control model for 
driving. In essence their proposals increase the neglect and 
activity time of the robots to achieve higher fan-out. Others 
have used a “select and command” model for controlling 
multiple robots [11].  

However, none of these have been carefully evaluated as to 
the advantages or decrease in effort afforded by the various 
user interface designs. In most cases the control architecture 
is intertwined with the human-robot interface making it 
hard to distinguish which part of the solution is contributing 
to progress. In this paper we describe a model for isolating 
and measuring the human-robot interface for teams of 
robots. 

A SAMPLE ROBOT WORLD 
To explain our fan-out ideas, we pose the example robot 
world shown in figure 1. In this world there are robots, 
targets and obstacles (trees & rocks). The task is for all 
targets to be touched by robots as soon as possible. This is 
an abstraction of a search task.  

We can assume a simple-minded robot that accepts a 
direction and a distance from its user and will move in that 
direction until it either travels the indicated distance or 
encounters an obstacle, in which case it stops. In figure 1 
the robot has three legs to its journey each characterized by 
a different user command. However, the robot’s guidance 

may not be perfect. It may drift to the left on the first leg, 
run into the trees and stop early. Its odometry may be faulty 
and it may overrun the end of leg one necessitating 
additional commands from the user to extricate it from the 
dead-end of rocks and trees. 

 

T

1 2 3 

 

Figure 1 – Simple Robot World 

This example illustrates two measures that are important to 
our model of fan-out. The first is neglect-time. That is the 
time the robot can run while being ignored by its user. 
Neglect time is a measure of a robot’s autonomy. This is 
very similar to Crandall’s neglect tolerance [5]. Unlike 
Crandall’s work, we are interested in multiple robots rather 
than efficient interfaces to a single robot. The second 
measure is activity-time, which is the time the robot will 
make effective progress before it either gets a new 
command from the user, it stops making effective progress 
or it completes the command the operator gave it. Neglect 
time and activity time are not the same. For example, if the 
user does not trust the odometry, he may watch the robot to 
make certain it does not overshoot the end of leg 1. The 
robot is independently active, but is not being neglected. 
This difference has an important impact on multiplexing 
human attention among multiple robots. 

The relationship between activity time (AT) and neglect 
time (NT) is determined by the amount of overlap (O) 
between robot activity and interaction time (IT). Overlap is 
the percentage of the interaction time where the robot is 
also active.  

NTITOAT += *  

This relationship is illustrated by driving a car. The 
interaction time and the activity time of a car are almost 
completely overlapped (O=1.0). A car is almost always 
moving when the driver is steering it.  In addition, the 
neglect time for a car is very small, therefore AT is not 
much larger than IT. Plugging this into the fan-out equation 
we see that a person cannot drive more than one car at once. 
In the case of a manufacturing robot, the robot is not at all 
active during setup (O=0.0) but the robot will run for days 
or months after a day of setup. Thus AT is many times 
larger than IT and the fan-out is quite high. The 
experimental models that we finally used are based on AT 
and IT. The relationship between O, NT and AT does not 
impact our comparisons of various human-robot interfaces. 
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In our simple robot world we can give the robot more 
intelligence. If it encounters an obstacle it can bounce off 
and continue trying to make progress towards its next check 
point. Thus the robot will operate longer without 
intervention (increased AT) and the user can trust it more 
(increased NT). Adding some local vision and planning, the 
robot might also detect the cul-de-sac of trees and rocks and 
not enter there without more explicit instructions. Again the 
robot can be trusted more and NT can increase. Increasing a 
robot’s trusted intelligence can increase its neglect time and 
thus increase fan-out. 

RATIONALE FOR FAN-OUT 
The primary reason for our interest in fan-out is that it is a 
measure of how much leverage of human attention is being 
provided by a robot’s automated capabilities. Autonomy is 
not an end unto itself. We may study it in that way, but in 
reality we want automation because it expands human 
capacity. Fan-out is a measure of the leverage of human 
attention.  

The ability for a human to control multiple robots depends 
upon how long that robot can be neglected. If a robot makes 
no progress while being neglected, the human will have no 
attention to devote to other robots. However, as will be 
shown, it is difficult to measure neglect time. Instead we 
measure activity time, which is an average amount of time 
that a robot functions between instructions from the user. If 
we divide the average activity time by the amount of time a 
user must interact with each robot, then we get the fan-out 
equation. 

IT
ATFO =  

However, the relationships are not a simple as this analysis 
might indicate. We will discuss these interrelationships 
along with the experimental data. The key point, we 
believe, in understanding these complexities is that IT is not 
monolithic. Our current hypothesis is that there are at least 
4 components to interaction time. They are: 

1. Robot Monitoring and Selection – reviewing the 
state of all robots and deciding which robot needs 
the user’s attention next. 

2. Context Switching – when switching attention 
between robots the user must spend time 
reaquiring the goals and problems of the new 
robot. 

3. Problem Solving – having reaquired the situation 
the user must analyze the problem and plan a 
course of action for the robot. 

4. Command Expression – the user must manipulate 
input devices tell the robot what to do. 

Traditional direct-manipulation/desktop interfaces generally 
exhibit only components 3 and 4. The experiments that we 
have performed show the effects of some of these 

components in the ways that the data deviates from the 
predictions of the fan-out equation. 

Having broken down IT, it seems that IT should increase 
with FO. This is because the more robots there are to 
control, the greater the monitoring and robot selection time. 
Also the more diverse situations the robots find themselves 
in the greater the context-switching time. As we will see in 
the data smarter robots can offload some of the problem 
solving time from the user and thus reduce IT. 

MEASURING HRI 
Our hypothesis is that the fan-out equation provides a 
model for how humans interact with multiple robots. The 
challenge in validating the fan-out equation is that 
interaction time (consisting of planning, monitoring and 
solving) occurs mostly in the user’s mind and is therefore 
difficult to measure directly. 

Measuring Neglect Time(NT) and Activity Time(AT) 
The properties of NT and AT are characteristics of a robot’s 
ability to function in a world of given complexity. These 
times are functions of robot ability, task complexity and the 
user’s understanding of the robot’s ability. 

In measuring either NT or AT we must control for the 
complexity of the task being posed. If the task posed in 
figure 1 had half as many trees, or no rocks, the task itself 
would be simpler and the robot could be safely neglected 
for a longer time. In essence, the more challenges a robot 
must face, for which it does not have sufficient autonomy, 
the lower NT and AT will be. The nature of the challenges 
will also have an impact. Therefore any measurements of 
NT or AT must control for the nature of the tasks being 
posed. We term this task complexity. 

Our first approach to measuring NT ignored the role of the 
user in determining the robot’s activity. We assumed that 
there was some measurement of NT in the context of a 
given task complexity. To measure NT we would randomly 
place a robot at some location in the world, give it a random 
goal and then measure the average time that the robot 
would operate before reaching the goal or failing to make 
progress. 

However, this approach failed to produce data that was 
consistent with the fan-out equation. After reviewing the 
videotapes of actual usage we found that this a priori 
measurement consistently overestimated NT. We identified 
three problems with this approach. The first is demonstrated 
on leg 1 of the robot route in figure 1. The robot could 
feasibly be neglected until it ran into the cul-de-sac of trees 
and rocks. However, users regularly saw such situations and 
redirected the robot early to avoid them.  The second reason 
was that users frequently did not trust the robot to work out 
low-level problems. Users would regularly give the robots 
shorter-term goals that the user believed were possible. 
Thirdly, we did not have a good measure for how much a 
robot’s activity overlapped the user’s attention to the robot. 
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All of these failing led to NT predictions that were much 
larger than actual usage. 

A simpler and more accurate measure we found was 
activity time (AT). We measure the time from a user’s 
command of a robot until that robot either stops making 
progress or another use command is issued to it. We 
average these times across all robots in an experiment. This 
measure of activity time fit better with the fan-out equation 
and was much easier to measure.  

This activity time measure is dependent on determining 
when a robot is making effective progress and when it is 
not. In our simple robot world, robots stop when they reach 
an obstacle. Thus a robot is active when it is moving. 
Because of the nature of our test user interface robots are 
always getting closer to the goal if they are moving. 
Therefore our simplistic measure of effective progress 
works in this case. For more intelligent robots this is more 
complicated. An intelligent robot must balance goal 
progress with obstacle or threat avoidance. This can lead to 
interesting feedback and deadlock problems, which cannot 
always be detected. These issues form the basis for many of 
the conundrums of Isasc Asimov’s robopsychology[1]. In 
many situations, however, we can detect lack of progress 
and thus the end of an activity. 

Measuring FO 
Our next challenge is to measure fan-out (FO). This, of 
course, is the measure that we want to maximize because it 
is an estimate of the leverage provided by our human-robot 
teams. Our first approach to fan-out measurement was the 
fan-out plateau. For a given task, we must have a measure 
of task effectiveness. In our simple robot world, this might 
be the total time required to locate all N targets. In other 
scenarios it might be the total amount of terrain surveyed or 
the total number of purple hummingbirds sighted. Parker 
has identified a variety of task effectiveness metrics for use 
with robot teams[13]. The fan-out plateau is shown in 
figure 2. As we give a user more robots to work with, the 
task effectiveness should rise until it reaches a point where 
the user’s attention is completely saturated. At this point 
adding more robots will not increase task effectiveness and 
may in some situations cause a decrease if superfluous 
robots still demand user attention. 

The attractiveness of the fan-out plateau measure is that it 
directly measures the benefits of more robots on actual task 
accomplishment. The disadvantage is that it is very 
expensive to measure. We might hypothesize that for a 
given HRI team, the fan-out plateau would be between 4 
and 12 robots. We then must take 8 experimental runs to 
find the plateau (if our hypothesis was correct). Individual 
differences in both users and tasks require that we must take 
many runs at each of the 8 possibilities in order to develop a 
statistically significant estimate of the fan-out plateau. 
Since realistic tasks take 20 minutes to several hours to 
accomplish, this measurement approach rapidly consumes 
an unrealistic amount of time.  
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Figure 2 – Fan-out Plateau 

An alternative measure of FO comes from out ability to 
determine which robots are active and which are not. If we 
have knowledge of activity as needed by our AT 
measurement, then we can sample all of the robots at 
regular time intervals and compute the average number of 
active robots. What we do to measure FO is to give the user 
many more robots than we think is reasonable and then 
measure the average number of active robots across the 
task. This gives us a strong estimate of actual fan-out that is 
relatively easy to measure. Note that this is only an estimate 
of fan-out because the large number of robots introduces its 
own cognitive load. We believe, however, that ignoring 
unneeded robots will not impact the value of the metrics for 
comparisons among competing HRI solutions. 

Task saturation 
A key problem that we have discovered in measuring fan-
out is the concept of task saturation. This is where the task 
does not warrant as many robots as the user could 
effectively control. A simple example is in figure 1. If we 
add another robot to the task, the effectiveness will not go 
up because one robot can reach the target just as fast as two 
or three. The problem is that the task does not justify more 
workers. We will see this effect in the experiments. 

Measuring IT 
To improve human-robot interaction (HRI) what we really 
want is a measure of the interaction time (IT). IT is the 
measure that will tell us if the user interface is getting better 
or just the robotic automation. Our problem, however, is 
that we do not have a way to directly measure IT. There are 
so many things that can happen in a user’s mind that we 
cannot tap into. To measure the Fitt’s law effects or 
keystroke effects will only measure the command 
expression component of the interface. Our experience is 
that in a multi-robot scenario, command expression is a 
minor part of the interaction time.  

Solving the fan-out equation for IT can give us a method 
for its measurement.  

FO
ATIT =  

CHI 2004  ׀  Paper 24-29 April  ׀  Vienna, Austria 

 Volume 6, Number 1 

 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

234



 

 

However, this measure of IT is only valid if the fan-out 
equation is valid and the FO and AT measures are true 
measures. As has been shown in the preceding discussion 
we have good estimates for both AT and FO but it would be 
too strong of a claim to say that we had accurately 
measured either value. Our approach then is to replace IT 
with what we call interaction effort (IE). Interaction effort 
is a unitless value that is defined as: 

FO
ATIE =  

This is obviously derived from the fan-out equation but it 
makes no claims of being an exact time. It is a measure of 
how much effort is required to interact as part of a human-
robot team.  Unlike interaction time, interaction effort does 
not give us an absolute scale for measuring interaction-
time. The interaction effort measure does give us a way to 
compare the interactive efficiency of two HRI designs. A 
comparison tool is sufficient as a measure of progress in 
HRI design.  

Validating the fan-out equation 
Our model of IE depends upon the validity of the fan-out 
equation, which is difficult to prove without measuring IT 
or IE directly.  

Our approach to validating the fan-out equation is as 
follows. If we have 1) a set of robots that have varying 
abilities and thus varying neglect times, 2) all robots have 
identical user interfaces and 3) we use the various types of 
robots on similar tasks of the same task complexity, then if 
the fan-out equation is valid, the measure of IE should be 
constant across all such trials. This should be true because 
the user interface is constant and IE should be determined 
by the user interface. The experiments described in the 
remainder of this paper will show where this does and does 
not hold. 

ROBOT SIMULATIONS 
As a means of validating the fan-out equations we chose 
robot simulations rather than actual robots. We did this for 
several reasons. The first is that it is much easier to control 
the task conditions. When trying to validate the fan-out 
equation we need careful controls. These are hard to 
achieve with real robots in real situations. Secondly we are 
trying to discover laws that model how humans interact 
with multiple independent robot agents. The physical 
characteristics of those agents should not change the laws.  
Third we want to test robots with a variety of levels of 
intelligence. Changing a simulated robot’s sensory and 
reasoning capacity is much simpler than building the 
corresponding robots. To perform the experiments that we 
did, we would have needed a fleet of 15 robots (5 each of 3 
types), with identical interfaces.   

There is one way in which the real world differs sharply 
from our simulated world. In the real word, robots crash 
into obstacles, fall into holes, and run into each other. 

Safety is a real issue and lack of safety reduces the user’s 
trust. As discussed earlier reduced trust leads to reduced 
activity times. In our simulations, robots never crash or fail 
therefore trust is higher than reality. However, we believe 
that this will be reflected in different activity times and 
should not affect the validity of the fan-out equation.  

The task 
For our fan-out experiments we chose a maze-searching 
task. We built a random maze generator that can 
automatically generate tasks of a given complexity. We 
defined task complexity as the dimensions of the maze, 
density of obstacles and number of targets. Using our 
random maze generator we were able to create a variety of 
tasks of a given complexity. After random placement of 
obstacles and targets the maze was automatically checked 
to make certain that all targets were reachable. Our measure 
of task effectiveness was the time required for all targets to 
be touched by a robot.  

All robots had the same user interface as shown in figure 3. 
The user controls are quite simple and the same for all 
experiments. Each robot has a goal represented by a small 
square that the user can drag around. The robot will attempt 
to reach the goal. The variation in robots is in how they deal 
with obstacles. For less intelligent robots the user can set a 
series of very short-term goals with no obstacles. For more 
intelligent robots more distant goals can be used with the 
robot working out the intervening obstacles. 

 
Figure 3 – Dragging Robots 

A major variation of this user interface, that we used in 
most of our tests, obscures all regions of the maze that have 
not been visited by robots, as in figure 4. The idea is that 
until a robot reaches an area and broadcasts what it finds, 
the terrain is unknown.  
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Figure 4 –Obscured World 

Three types of robots 
To test our fan-out theory of constant IE for a given user-
interface we developed three types of simulated robots. The 
first type (simple) heads directly towards its current goal 
until it reaches the goal or runs into an obstacle. This is a 
relatively simple robot with little intelligence.  

The second type (bounce) bounces off obstacles and 
attempts to get closer to the goal even if there is no direct 
path. It never backs up and thus gets trapped in cul-de-sacs. 
The bouncing technique solves many simple obstacle 
avoidance problems but none that require any global 
knowledge. This robot stops whenever it cannot find a local 
movement that would get it closer to the goal than its 
current position. 

The third type of robot (plan) has a “sensor radius”. It 
assumes that the robot can “see” all obstacles within the 
sensor radius. It then uses a shortest path algorithm to plan 
a way to reach the point on its sensor perimeter that was 
closest to the goal. This planning is performed after every 
movement. This robot stops whenever its current position 
was closer to the goal than any reachable point in its sensor 
perimeter. This robot can avoid local dead-ends, but not 
larger structures where the problems are larger than its 
sensor radius. 

We measured average neglect time for each of the types of 
robots using the random placement/task method. As robot 
intelligence increased, neglect time increased also. This 
gave us three types of simulated robots with identical tasks 
and user interfaces. 

VALIDATING THE FAN-OUT EQUATION 
To validate the fan-out equation we performed a number of 
experiments using our simulated robot world. Our 
experimental runs were of two types. In our initial runs 
individual university students were solicited and 
compensated to serve as test drivers. They were each given 
about 30 minutes of training and practice time with each 
type of robot and then given a series of mazes to solve 
using various types of robots.  

Task Saturation 
Task saturation showed up in the early tests. In our first 
tests we started all robots in the upper left hand corner of 

the world. Since this is a search task there is an expanding 
“frontier” of unsearched territory. This frontier limits the 
number of robots that can effectively work in an area. Fan-
out was low because the problem space was too crowded to 
get many robots started and once lead robots were out of 
the way users tended to focus on the lead robots rather than 
bring in others from behind as the frontier expanded. 
Because none of our users worked for more than 2 hours on 
the robots, there was no time to teach or develop higher-
level strategies such as how to marshal additional workers. 
We resolved the frontier problem by evenly distributing 
robots around the periphery of the world. This is less 
realistic for a search scenario, but eliminated the frontier 
problem. 

We originally posited two interface styles, one with the 
world entirely visible (light worlds) and the other with areas 
obscured when not yet visited by a robot (dark worlds). We 
thought of this as two UI variants. Instead it was two task 
variants. In the dark worlds the task is really to survey the 
world. Once surveyed, touching the targets is trivial. In the 
light worlds the problem was path planning to the targets. 
Since reaching known targets is a smaller problem than 
searching a world, task saturation occurred much earlier. 
Because of this all of our races were run with dark worlds 
(Figure 4). 

Figure 5 shows the relationship between fan-out and 
remaining targets. The dark thin line is the number of 
remaining targets not yet touched and the lighter jagged line 
is the average number of active robots. This graph is the 
average of 18 runs from 8 subjects using planning type 
robots. Other experiments showed similar graphs. In the 
very early part of the run it takes time to get many robots 
moving. Then as targets are located, the problem becomes 
smaller and the fan-out reduces along with it. The crossover 
occurs because in a dark world the fact that one or two 
targets remain is not helpful because any of the unsearched 
areas could contain those targets.  
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Figure 5 – Task Saturation 

Test Data 
These individual tests gave us good feedback and helped us 
refine our ideas about fan-out and interaction time. 
However, unmotivated subjects distorted the results. We 
had a number of subjects who just spent the time and 
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collected their money without seriously trying to perform 
the tasks quickly. It was clear that attempting to supervise 
multiple robots is more mentally demanding than only one. 
In many cases fan-out was not high even though from 
viewing the videotapes, the subjects were easily capable of 
doing better. To resolve this issue we held a series of “robo-
races”. Groups of 8 people were assembled in a room each 
with identical workstations and problem sets. Each trial was 
conducted as a race with monetary prizes to first, second 
and third place in each trial. The motivation of subjects was 
better and the fan-out results were much higher and more 
uniform.  

In our first race there were 8 participants all running 8 races 
using the dark worlds. The density of obstacles was 35% 
with 18 robots available and 10 targets to find. We ran 2 
races with simple robots and 3 races each for the bounce 
and plan robots for a total of 64 trial runs. The measured 
fan-out and activity time along with the computed 
interaction time is shown in figure 6. Analysis of variance 
shows that there is no statistical difference in the interaction 
times across the three robot types. This supports our fan-out 
equation hypothesis. 

Robot Type Mean 
Fan-out 

Mean 
Activity Time 

Computed 
Interaction Effort 

Simple 1.46 4.36 3.06 
Bounce 2.94 7.82 2.77 

Plan 5.11 14.42 2.88 
Figure 6 –Test 1 - 18 robots, 10 targets,  35% obstacles 

To evaluate our hypothesis that activity time and thus fan-
out is determined by task complexity we ran a second 
identical competition except that the obstacle density was 
22%. The data is shown in figure 7. Activity time clearly 
increases with a reduction in task complexity along with 
fan-out, as we predicted. The interaction time computations 
are not statistically different as we hypothesized. 

Robot Type Mean 
Fan-out 

Mean 
Activity Time 

Computed 
Interaction Effort 

Simple 1.84 4.99 2.88 
Bounce 3.36 11.36 3.38 

Plan 9.09 24.18 2.69 
Figure 7 – Test 2 -  18 robots, 10 targets, 22% obstacles 

One of our goals in this work was to develop a measure of 
interaction effort that could serve as a measure of the 
effectiveness of a human-robot interface. To test this we ran 
a third competition of 8 subjects in 8 races. Test 3 was the 
same as test 1 except that we reduced the resolution of the 
display from 1600x1200 to 800x600. This meant that the 
mazes would not fit on the screen and more scrolling would 
be required. This is obviously an inferior interface to the 
one used in test 1. Figure 8 compares the fan-out and the 
interaction effort of tests 1 and 3. 

Mean Interaction Effort 
Robot Type no scroll scrolled diff 

Simple 3.06 4.48 46% 
Bounce 2.77 3.47 25% 

Plan 2.88 3.63 26% 
Figure 8 – Compare scrolled and unscrolled interfaces 

Test 3 shows that inferior interfaces produce higher 
interaction effort, which is consistent with our desire to use 
interaction effort as a measure of the quality of a human-
robot interface.  

However, figure 8 also shows a non-uniform interaction 
effort across robot types for the scrolling condition. This is 
not consistent with our fan-out equation hypothesis. Since 
all three robots had the same user interface they should 
exhibit similar interaction effort measures. Analysis of 
variance shows that the bounce and plan robots have 
identical interaction effort but that the simple robot is 
different from both of them.  

We explain the anomaly in the simple robots by the fact 
that interaction effort masks many different components as 
described earlier and fan-out partially determins those 
components. Figure 9 shows the fan-out measures for test 3. 
The fan-out for the simple robots is barely above 1 
indicating that the user is heavily engaged with a single 
robot. We watched the user behavior and noticed that the 
interaction is dominated by expressing commands to the 
robot with very little planning. With the bounce and plan 
robots the fan-out is much higher and users spend more 
time planning for the robot and less time trying to input 
commands to them.  

Robot Type Mean Fan-out 

Simple 1.12 
Bounce 2.47 

Plan 3.97 
Figure 9 – Fan-out for Test 3 (scrolled world) 

It appears that when fan-out drops very low the nature of 
the human-robot interaction changes and the interaction 
effort changes also. To understand this effect better we ran 
a fourth competition where we varied the speed of the 
robots. Varying the speed of the robot will change its 
neglect time without changing either the robot’s 
intelligence or the user interface. A slower robot will take 
longer to run into an obstacle and therefore can be 
neglected longer. We used the same worlds and interface as 
in test 1, but we varied speeds across each run with only 
two robot types. The results are shown in figure 10.  
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Robot 
Type 

Robot 
Speed 

Mean 
Fan-out 

Mean 
Activity 

Time 

Computed 
Interaction 

Effort 
Simple 3 2.54 7.21 3.05 
Simple 6 1.21 3.51 3.09 
Simple 9 0.89 3.26 3.67 

          

Bounce 3 4.44 13.54 3.51 
Bounce 6 3.11 9.60 3.10 
Bounce 9 1.97 5.76 2.94 
Bounce 12 1.82 4.42 2.51 
Bounce 15 1.62 4.04 2.53 

Figure 10 – Test 4 - Varying Robot Speed 

For each class of robot, increasing the robot’s speed 
decreases activity time and correspondingly reduces fan-
out. Again with the fastest simple robots, the fan-out drops 
very low (the user cannot even keep one robot going all the 
time) and the interaction effort is quite different from the 
slower robots. This confirms the change in interaction when 
fan-out drops. This indicates that the fan-out equation does 
not completely capture all of the relationships between fan-
out and interaction. This is also confirmed when we look at 
the interaction effort for the bounce robots. As speed 
increases, fan-out drops, as we would expect. However, 
interaction effort also drops steadily by a small amount. 
This would confirm the robot monitoring and context 
switching effort that we hypothesized. As fan-out is 
reduced, these two components of interaction effort should 
correspondingly reduce while other interactive costs remain 
constant. This would explain the trend in the data from test 
4.  

CONCLUSIONS 
It is clear from the test that the fan-out equation does model 
many of the effects of human interaction with multiple 
robots. The experiments also indicate that interaction effort, 
as computed from activity time and fan-out can be used to 
compare the quality of different HRI designs. This gives us 
a mechanism for evaluating the user interface part of 
human-robot interaction. However, it is also clear that fan-
out has more underlying complexity that the equation 
would indicate. This is particularly true with very low fan-
out. 
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