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ABSTRACT 
Digital paint is one of the more successful interactive 

applications of computing. Brushes that apply various 

effects to an image have been central to this success. 

Current painting techniques ignore the underlying image. 

By considering that image we can help the user paint 

more effectively. There are algorithms that assist in 

selecting regions to paint including flood fill, intelligent 

scissors and graph cut. Selected regions and the 

algorithms to create them introduce conceptual layers 

between the user and the painting task. We propose a 

series of “edge-respecting brushes” that spread paint or 

other effects according to the edges and texture of the 

image being modified. This restores the simple painting 

metaphor while providing assistance in working with the 

shapes already in the image. Our most successful fill 

brush algorithm uses competing least-cost-paths to 

identify what should be selected and what should not. 
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INTRODUCTION 
One of the most common tasks when interacting with 

images is the selection of a region to be modified. This 

can be as simple as painting fills into areas of a hand-

drawn piece of animation or as complex as trying to 

separate a person’s face from a noisy background. This 

basic task goes under the names of painting (if the task is 

to change the color of selected pixels), selecting (if a 

specific region is desired) or matting (when trying to 

separate a foreground object from background). 

Fundamentally these are all the same task which is to 

select some set of pixels and then apply some effect to 

those pixels. Frequently we combine selection and effect, 

as when painting with a brush. The brush shape and 

mouse position specifies the pixel selection and the paint 

is the effect. At other times we select separately and then 

apply an effect. We might “lasso” a region (selection) and 

then darken it (effect). 

 

In this paper we present “edge-respecting brushes” as a 

new technique for smoothly combining intelligent 

selection and effect. The following figures illustrate the 

kind of edge-respecting brushing effects that are of 

interest. In figures 1-3 we show the original, the brush 

effect and an exaggerated color to clearly show the brush. 

Figure 1 uses a transparent dark brown brush to paint a 

tan onto skin. Edge-awareness helps to avoid the dress  

and background. Figure 2 shows a brush being used to 

darken selected areas of the background for contrast 

without infringing on the skin and blouse. Figure 3 uses a 

brush whose effect is to enhance contrast. We brush on 

regions of the hair where we want to show highlights. The 

edge-respecting algorithm helps us avoid the face and 

eyebrows.  

 
Figure 1 – Brushing on a tan on only the skin 

 
Figure 2 – Brushing in background darkening 

 
Figure 3 – Brushing in a contrast effect (hair only) 

 
Figure 4 – Brushing away selected wrinkles with blur 

Figure 4 shows a brush with a blurring effect to remove 

wrinkles. Too many wrinkles show age while a few key 

wrinkles show character. The edge-aware brush allows 

the artist to selectively remove wrinkles without 

eliminating the key details. We want smooth control over 
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the algorithm as the artist decides which edges to remove 

and which to retain. 

 

Interactive behavior 
Interactively our fill brushes behave like the brushes 

found in most painting applications. The user presses a 

mouse (or pen) button and then moves the mouse around 

while the brush selects the pixels to be modified. The 

difference is that our fill brushes pay attention to the 

underlying image and adapt their pixel selection based on 

the mouse location and the texture/edges in the image.  

 

Though in figure 2, the brush diameter is large the 

selection respects the edge between the blouse and the 

background. In figure 1 we also see texture and edges in 

the background. Though these edges are not as strong as 

the background/blouse edge, they do impact the 

algorithm. In figure 3 the hair provides many edges to our 

algorithm. The key idea in both of these examples is that 

the user has control of the brush position and can move 

over or avoid edges as desired. It is the user manipulating 

the brush rather than the algorithm that ultimately decides 

which pixels are selected. In figure 4 an algorithm would 

have a difficult time deciding which wrinkles to keep for 

character and which to blur to eliminate age. Our brush 

algorithm can assist the user in retaining important details 

while allowing them to brush over details that should be 

ignored. 

 
Figure 5 – Filling a line drawing 

 

 
Figure 6 – Tinting a textured object 

 

The task in figure 5 is to take a cartoon inking and then 

color the face flesh tone without coloring the eyes, hair or 

mouth. The coloring of a line drawing is a common task 

in animation and commercial drawing. The task is 

characterized by very little texture, strong edges and lots 

of implied connections across gaps in the sketch. The task 

in figure 6 is to tint a mushroom blue. This is not a very 

common task but it is an example of working with highly 

textured objects. The blue tint is to make the selection 

clearly visible in the paper for ease of discussion. 

 

PRIOR WORK 
Though our technique is a brush and functions with a 

“painting” metaphor the key prior work is actually in 

selection. There are five prior techniques of interest: flood 

fill, boundary specification, tri-maps, bilateral grids, 

intelligent paint and quick select. 

 

Flood fill 
The earliest automatic pixel selection tool was the flood 

fill. It is found in virtually every paint application. The 

mouse down point (MDP) acquires a base color (BC) 

from the pixel underneath the mouse. A recursive search 

is then performed to select every pixel that is similar to 

BC and adjacent to a pixel that is already selected. This 

algorithm suffers from two failings. The first is that if 

there are any “leaks” in the edges that enclose a region, 

the flood fill can select large areas of the image that are 

unintended. This explosive flooding is very frustrating to 

control. In figure 7 a flood fill, initiated at the cross, 

spreads through the gaps in the lines filling almost all of 

the drawing. Only the left eye escaped. Photoshop’s color 

replacement brush imposes a radius limit on such fills but 

still leaks through gaps in an edge. 

 
Figure 7 – Flood fill escaping through boundary gaps 

 

A second failing of the flood fill is that it can leave 

speckles and islands in regions that appeared to the user to 

be smooth. The image on the left of figure 8 shows a 

drawing that appears smooth yet the flood fill on the right 

shows gaps and speckles. The tedious task of removing 

these eliminates most of the advantages of using flood fill. 

   
Figure 8 – Gaps and speckles from flood fill 



 

Figure 9 shows even greater difficulties when texture is 

present. Additive fill selection (shift-click) was invoked 8 

times using Photoshop’s Magic Wand (flood fill) to get 

the selection shown in figure 9. The high texture 

frequently blocks the fill algorithm leaving regions 

isolated. Each isolated speckle must be individually filled 

or painted to complete the task. The most important 

interactive deficiency is the loss of control by the user. 

When the fill is initiated, the user is frequently surprised 

by the final result. This lack of predictability in the 

behavior is a challenge to usability. 

 
Figure 9 – Flood fill speckles 

 

Boundary specification 
Specification of a selected region by defining its boundary 

is also a very old technique. This technique is 

characterized by drawing the perimeter outline of the 

selected region. This “lasso” technique is a very slow and 

tedious process for complex regions.  

 

Selection boundaries can be improved by algorithms that 

optimize selection paths to follow gradient (edge) 

boundaries. Snakes [5, 12] take an initial selection 

boundary and improve it by moving to stronger nearby 

edges. This suffers from a lack of user control when the 

desired boundary is not as strong as another nearby 

boundary. The “snapping” of an edge to a different one 

can be welcome or disconcerting depending upon the 

match between the snap and the desired result.  

 

Better interactive control is provided by Intelligent 

Scissors [7], or the Magnetic Lasso (as it is known in 

Photoshop). In this technique the user draws the edge with 

the mouse, but the actual boundary follows the locally 

strongest gradient edge. This boundary is continuously 

echoed to the user so that they can see what will happen 

and attempt to correct the selected edge by moving the 

mouse. Techniques such as “freezing” or clicking on key 

points help the selected edge to remain locally stable and 

stick to key details. The continuous interactive echo of the 

edge placement is very helpful to the user and has made 

this a popular tool. 

 

 
Figure 10 – Intelligent Scissors taking shortcuts 

 

Edge optimization struggles with highly convoluted edges 

such as shown in figure 10 because the algorithm tries to 

take short cuts if there is an edge to follow. This can be 

corrected by manually setting anchor points in the tips 

and crevices, but this is more interactive work. Figure 11 

shows the lower edge of our mushroom that is highly 

scalloped. The selection is indicated by the dotted line. 

This scalloping is a delicate detail that we do not want to 

lose, but the edge optimization of intelligent scissors 

smoothes it out and ignores the fine detail. On the 

opposite side of the stem it has again cheated on a corner. 

 
Figure 11 – Detail smoothing from optimization 

 

Intelligent scissors also has problems with the cartoon 

face. It is easy to drag the control around the edges of the 

face, but the resulting fill covers all of the facial detail. To 

achieve the desired result we must use the tool to unselect 

around all the edges of each eyebrow, mouth or eye line 

so that the line is not covered. This is very time 

consuming. In this example, intelligent scissors may also 

skip over to the opposite side of a line we are trying to 

avoid if the other side offers a more economical path. 

This is very unsatisfactory. 

 

The background contrast problem in figure 3 is also not 

well suited to boundary techniques. The width and 

intensity of the contrast region are an artistic choice that 

must be made continuously as the user views the resulting 

effect. The problem is that we have a painting task to 

which we are trying to apply an edge-defining tool. They 

are not well matched. All boundary specification 

techniques separate the selection from the effect. 

 
Tri-map techniques 
A number of interactive image segmentation systems 

have been developed around tri-map specification. Many 

of these use the graph-cut algorithm [3]. The basic idea is 



that the user designates some pixels as inside and some as 

outside. This forms a tri-map of foreground, background 

and undecided pixels. The image is viewed as a connected 

graph with pixels forming vertices and pixel adjacency 

forming the edges. Generally an edge cost function is 

computed by comparing the foreground and background 

training pixels. The selection boundary is then determined 

as the minimal cut of this graph that separates inside and 

outside training pixels. Prominent examples of this 

technique are Lazy Snapping [6] and GrabCut [10]. 

Graph-cut algorithms vary based on the energy function 

that they attempt to minimize and various ways of 

speeding up the calculation of the minimal cut of the 

graph. The graph-cut algorithm itself is quite complex. 

 

Figure 12 shows the training strokes necessary to produce 

a reasonable selection of the face without including the 

eyes, hair or mouth using an implementation of Lazy 

Snapping. Green strokes indicate pixels that are outside 

and red strokes indicate inside. The number of strokes is 

quite modest and little accuracy is required of the user. 

Problems occur at the corners of the eyes where the 

automatic algorithm fights with the desires of the user as 

to where the edge should be. The implementation that we 

used also steals 1-2 pixels out of the lines making them 

thinner. 

 
Figure 12 – Lazy Snapping of the face 

The mushroom task was more difficult using Lazy 

Snapping. The leaf on the right of figure 6 was initially 

selected as part of the mushroom though it is quite distant 

from it. The reason is its similar color. Marking the leaf as 

unselected then caused regions of the mushroom to be 

unselected. Correcting the mushroom regions caused 

problems again with the leaf. Several back and forth 

operations finally corrected the problem. When a user 

makes a mark in one region of the screen and the 

selection changes in another, there is a serious usability 

problem. The user is now required to continuously scan 

the entire image for new errors after each correction. 

 

Figure 13 shows a close-up of the mushroom stem that the 

algorithm refused to correct. Note that the dotted selection 

line cuts off before the bottom of the stem where the 

algorithm gets confused by the branch protruding across 

the stem. There are training strokes in the lower area but 

the algorithm has chosen to ignore them so as to optimize 

its function. Automatically computed selections can save 

users significant amounts of time. 

 
Figure 13 – Lazy Snapping selection failure. 

There are a variety of formulations used to produce an 

appropriate selection from a tri-map (inside, outside, 

unknown). Each of these optimizes in various ways to 

eliminate deficiencies of various algorithms. Many of the 

problems demonstrated above are solved in other 

formulations. There is still a fundamental problem with 

the tri-map technique’s interactive style. The user 

specifies inside/outside with some strokes and the 

algorithm then makes its best choice. If the image, task 

and algorithm are well matched then the result is highly 

predictable and highly satisfactory. If they are not well 

matched then the result is frequently not predictable. This 

leads to a user/algorithm negotiation through additional 

input as the user tries to convince the algorithm to adopt a 

more acceptable selection. This is particularly 

problematic in cases like figures 3 and 4 where the user is 

not sure what the right choice should be until the results 

are seen.  

 

The fault is not so much in the matting algorithm as in the 

tri-map approach to interaction. We need an approach that 

is interactively more fluid than the tri-map offers. The 

problem is that the user is not painting or selecting an 

image, they are training an algorithm to paint or select an 

image.  

 

Early tri-map approaches created binary selections which 

are not good in figures 2 or 4. Improvements to provide 

alpha matte selections can produce nice results but are 

generally not interactive at interactive speeds. Some 

algorithms take almost 2 minutes to solve. We have not 

referenced these numerous algorithms because they are 

not appropriate to our task.  

 

A variation on the tri-map strategy is Soft Scissors[11]. In 

this approach the user is given a wide brush with which to 

trace out the boundary of a region. At each movement of 

the brush some pixels on the brush edge are identified as 

background and others foreground with the interior pixels 

identified as unknown. The tri-map selection is then 

solved locally, providing a more interactive selection 

process. However, if the selection is not what the user 

desired, the user has less control than before in correcting 

the choice. Interactivity is increased by the real-time 

nature of the algorithm but control is not. Soft Scissors 

has the nice property of adapting to fuzzy edges such as 

fur where the selection may be indistinct.  

 



Another property of tri-map algorithms that will become 

important in our brush implementation is the tri-map 

model for inside/outside. All of these algorithms take the 

pixels identified as inside and those identified as outside 

and develop a model for evaluating whether a given pixel 

is likely to be inside or outside. The algorithms used to 

develop such models are quite diverse. They might be as 

simple as an average color for inside and outside or more 

powerful machine learning models. The key point is that 

they all assume that a sample of outside pixels is known 

and a sample of inside pixels is also known. In our brush 

strategy, these facts are not known, primarily because the 

users themselves may not know them until they perceive 

the resulting effects of their brush. 

 

One tri-map technique proposed by Bai and Sapiro [1] is 

of interest because instead of graph-cut it uses a geodesic 

distance. A pixel is labeled foreground or background 

depending upon whether it is closest to a foreground or 

background pixel using a geodesic distance. We can 

compute the distance between two pixels by summing the 

pixel transitions along the least cost path. If the pixel 

transition costs are weighted by the change in pixel color 

across the edge or by the similarity of the new pixel to the 

original source pixel, we have a geodesic distance. Paths 

that must go through dissimilar pixels acquire a greater 

cost and thus a greater distance. If we seed Dijkstra’s 

algorithm with foreground and background pixels it will 

compute the least cost path to each pixel being considered 

and thus produce a labeling. We will use a similar 

approach to this in our brush formulation. 

The indirection problem 

All of the tri-map techniques share the indirection 

problem which is that the user is not painting but rather 

training an algorithm that then does the painting. The user 

is not applying a desired effect to an image but rather 

trying to coax an algorithm into generating the desired 

effect. One advantage of tri-map interaction is its brevity 

of expression for many situations. A few strokes of inside 

and outside scribbles can quickly generate a good 

selection region. However, in figures 2, 3 and 4 this is 

much more difficult because of the user judgment 

required to get it right. The indirect UI offered by tri-

maps in problematic in many situations. 

 

Painting methods 
Some prior methods do not use tri-maps but instead 

provide a painting metaphor over an underlying algorithm 

and data structure. Intelligent paint [8] works by finding 

“watershed” regions of similar color and filling those 

regions as the user moves a brush through them. This 

algorithm has the same automation properties as graph-

cut in that the user intent may not match the algorithm’s 

assumptions. However, it does have a more paint-oriented 

user interface than the graph-cut techniques. It also 

behaves locally rather than having input in one region 

causing changes in a totally different region. It does, 

however, have a “surging” problem. That is as the brush 

moves from region to region the paint appears to surge 

into new regions. This discontinuous flow of paint is 

problematic for users. Photoshop’s color replacement 

brush exhibits this surging behavior. Some of our early 

brushes had similar problems as will be discussed later. 

 

The bilateral grids of Chen et. al.[4] also support a 

painting style of interaction. A brush’s transparency can 

sometimes be modeled as a Gaussian function of the 

distance between a brush’s center and a pixel to be 

painted. This formulation found in many paint programs 

ignores the strong edges found in many images and paints 

or blurs across them. The bilateral filter adds a second 

term which is a Gaussian of the distance in color space 

rather than pixel space. This then sharply reduces a 

brush’s effect on pixels that are very different in color. 

This is described by Chen et. al. as an “edge-aware” 

brush. However, unlike the graph-cut algorithms that truly 

find edges, this algorithm is color difference aware rather 

than edge-aware, which is not quite the same thing. If one 

is painting flesh tone onto the cartoon face in figure 12 

the bilateral filter will not paint the lines (a good thing) 

but if the brush got too close to the hair line, for example, 

the brush would jump over the line (a bad thing) because 

the white pixels in the hair area are not very different 

from the brush pixel. A similar behavior occurs in 

Photoshop’s color replacement brush in “discontiguous” 

mode. 

 

The bilateral filter on its own is too expensive for 

interactive work. The bilateral grid is a data structure that 

renders bilateral filters fast enough to be used in a 

painting interaction if the GPU of a graphics card is 

available for the computation.  

 
Figure 14 – Quick Select moving beyond the brush track 

 

Quick Select 
Photoshop CS3 has a Quick Select tool that allows a user 

to “paint” a selection using a brush. From the pixels that 

the brush passes over the extent of the selection is 

inferred. The algorithm for this is not public. This 

technique has a nice interactive feel. This technique is an 

“eager” technique in that it tries to reach out as far as 

indicated by the pixels that have been brushed over. In 

figure 14 the dark streak shows the pixels that the user 



passed the brush over. The dotted line indicates the 

inferred selected region. This algorithm has the same 

surging property as intelligent paint. As the user moves 

the brush the region tends to jump out in ways that are 

reasonable but not always predictable. It does have a 

“subtract selection” mode where the user can push back to 

unselect regions that were too aggressively selected.  

 

As with the tri-map algorithms there is still an indirection 

issue in its interactive style. The user pushes around the 

selection edge until an appropriate edge is produced and 

then the effect is applied to the selected region. We want a 

method with more direct control and simultaneous with 

the desired effect. 

 

BRUSH DEVELOPMENT 
In this paper we describe a brush technique for filling, 

tinting, selecting, blurring or any other effect that the user 

might choose. The role of the brush is to select pixels to 

be modified and the apply the effect. What we want is a 

technique that is very easy to learn and very easy for the 

user to control. We see this issue of user control as being 

problematic in the more automated techniques. 

 

User interface 
Our user interface is quite simple. When the left mouse 

button (or pen tip button) is down the brush is engaged. 

Starting from the mouse position the brush pushes 

outwards to select the pixels that are to be modified. This 

is much like water color flowing out from a brush onto 

damp paper. As pixels are selected, the desired effect 

(paint, tint, blur, select, etc) is applied and feedback 

supplied to the user. Each time the mouse moves, the 

brush pixels are reselected using the brush’s algorithm. 

The pixel modification effect is not confirmed into the 

image until explicitly requested later by the user. The 

modified pixels are stored in a separate display layer. 

 

Using the right mouse button applies the brush selection 

in exactly the same way except that the pixels are 

unselected rather than selected. This provides a natural 

mechanism for undoing any mistakes. This symmetric 

brush behavior has been very effective for our users 

because mistakes do regularly occur. Reversing the 

mistake is conceptually simpler than undoing the last 

stroke because it is pixels that are of interest to the user, 

not the paint strokes. 

 

Lastly our brushes have a “radius,” which defines the 

extent of the brush’s selection behavior. This is analogous 

to the radius of a traditional round brush but not exactly 

so. We have attached the radius adjustment to the mouse 

wheel for easy manipulation. The radius can also be 

associated with pen pressure or adjusted by other devices 

with the non-dominant hand. This user interface is not 

particularly novel but it is the foundation for all of the 

techniques that follow. 

 

 

Simple cost-threshold-fill 
Our first fill brush technique uses Dijkstra’s algorithm to 

find the least cost path between the mouse position and 

each of the surrounding pixels. This is very similar to the 

traditional flood fill algorithm except for the termination 

condition.  The traditional queue-based flood fill ignores a 

pixel P when the difference between its color and the 

color of the mouse position pixel M is greater than some 

threshold. Our cost-threshold-fill brush modifies this 

flood fill algorithm slightly. It ignores a pixel P when the 

least cost path between M and P exceeds a threshold. This 

“fill until threshold” technique imposes the limits on the 

brush while retaining many of the characteristics of a 

flood fill that stops at strong edges. By moving the mouse 

point M around, the brush moves naturally into new areas 

under user control. This modified algorithm is shown in 

figure 15. 

 

mark all pixel states as “unknown” 
M = info about the pixel under the mouse 
T = cost threshold to limit the fill 
Q = a new least cost priority queue 
Q.add(M,0); 
while (!Q.empty()) 
{ [P,cost]=Q.nextLeastCost(); 
 if (P.state==unknown && cost<=T) 
 { P.state=selected; 
  foreach N in P.neighbors() 
  { Q.add(N, cost+C(M,P,N) ); 
  } 
 } 
} 

Figure 15 – Fill brush with cost 

 

This accumulated cost is very close to the geodesic cost of 

Bai and Sapiro. The heart of this brush algorithm is the 

definition of the transition cost C of moving from pixel P 

to a neighboring pixel N. The sum of these costs defines 

the cost of some path. More formally we define 

minPathCost(U,V,C) to be the cost of the minimal path 

from pixel U to pixel V using the transition cost function 

C. A pixel P is said to be selected by a brush if 

minPathCost(M,P,C)<threshold where M is the mouse 

position. The variation of Dijkstra’s algorithm shown in 

figure 15 computes minPathCost by adding the result of 

the transition cost function C at each step. This algorithm 

actually defines a family of possible brushes depending 

upon our choice for the function C. 

 

We can start with a simple transition function. The 

function baseCost(M, P, N)=diff(M.color,N.color) defines 

the cost of moving from pixel P to pixel N  as being the 

difference between the color of M and the color of N. 

Using baseCost by itself as the transition function, the 

result is very similar to the traditional flood fill. The 

difference is that small transition costs can accumulate to 

terminate the fill rather than a single dominant difference 



being the terminator as in flood fill. The problem is that 

small transition costs may not accumulate fast enough to 

provide good user control. On a smooth region of uniform 

color the brush behaves like unconstrained flood fill 

because the costs do not accumulate rapidly enough. Very 

low transition costs in smooth regions allow the fill to 

cover many pixels before exceeding the threshold. The 

presence of texture will slow down the spread of the brush 

and sharp edges will stop it. Figure 16 shows how the 

brush flows wildly in smooth regions.  The mouse point is 

at the cross hair. This is similar to the frustration of wet-

on-wet watercolor where the flow of paint is difficult to 

control. We refer to this unexpected flow of paint as 

“surging”. It is very disconcerting to the user. 

 

 
Figure 16 – Flowing problems with baseCost() brush 

We can improve the brush’s behavior by modifying 

baseCost() to include a term for the distance moved in the 

pixel-to-pixel transition. The prevents wild surging but 

still produces paint regions that vary widely depending on 

the amount of texture accumulated in the cost. Mouse 

point A in figure 17 is the origin of a brush using a 

threshold of 44. The blend between transition cost and 

distance is 0.5. Because the sky is relatively uniform the 

brush spreads quite far up to the edge of the cupola. 

Mouse point B is exactly the same brush in a more open 

area that has little transition cost. Mouse point C is the 

identical brush in a textured region.  

 
Figure 17 – Variants in behavior with B=0.5 and T=44 

 

Figure 18 shows another difficulty with this flooding 

brush algorithm, which is that it tends to leave holes just 

as the original flood fill did in figure 9. This is not very 

satisfactory. 

 

One variation is the maximum radius brush that uses the 

modified cost function but also imposes a maximum 

distance around the mouse point that restrains 

uncontrolled surging. The problem with holes still 

remains and a tendency when pushed close to a strong 

edge to suddenly surge across in a way that feels very 

uncontrolled to the user. This surging is similar in 

behavior to Photoshop’s color replacement brush. The 

color replacement brush attempts to resolve this problem 

by giving the user indirect control of a threshold 

parameter rather than as a natural part of the painting 

process and is awkward to control. 

 

 
Figure 18 – Flood brush blend effects 

 

Perimeter competition 
Our most effective brush technique is based on a 

competition between paint and not-paint pixels. We use 

an approach that is reminiscent of the tri-map, but as will 

be discussed, there are important differences.  In this 

technique the mouse point is seeded as a paint (to be 

selected) pixel, all of the points on the perimeter of the 

brush are seeded as not-paint (not selected) pixels and all 

other pixels are unknown. The algorithm tries to find the 

best labeling (paint/not-paint) for all pixels inside the 

brush radius by choosing paint or not-paint based on 

which seed point is “nearest” the pixel using our cost 

function described earlier. This is very much like the 

geodesic distance approach. The algorithm is shown in 

figure 19. Figure 20 shows this competing brush in action 

and how it respects the scalloped edges of the mushroom 

while providing user control of where to paint. 

 

mark all pixel states as “unknown” 
M = info about the pixel under the mouse 
Q = a new least cost priority queue 
R = radius of the brush 
Q.add(M,0,paint); 
foreach pixel C on circumference of the brush 
{ Q.add(C,0,not_paint); 
} 
while (!Q.empty()) 
{ [P, cost, source]=Q.nextLeastCost(); 
 if (P.state==unknown) 
 { P.state=source; 
  foreach N in P.neighbors() 
  { if (dist(N,M)<=radius) 
   { Q.add(N,  
     cost 
      +diff(N.color,P.color) 
      +dist(N,P), 
     source); 
   } 
  } 
 } 
} 

Figure 19 – Competing fill algorithm 
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Figure 20 – Competing fill brush 

 

The final state of a pixel P using the algorithm in figure 

19 is. 

 
if (minPathCost(M,P,colorDif())<minPathCost(C,P,colorDiff()) 

 paint 

else 

 not-paint  
 

This competition approach solves many of the problems 

with our other fill brush techniques. The isolated 

speckling problem does not occur because if an island is 

surrounded by paint pixels the least cost path to all pixels 

in the island must come through one of those paint pixels. 

The island therefore becomes paint rather than remaining 

speckled. The surging problem when crossing an edge is 

also mitigated. When the closeness of the mouse to an 

edge causes selection to overrun the edge into a smooth 

area, the competing paths from the not-paint perimeter are 

also moving across that same smooth area. The effect of 

pushing across an edge is much more subtle and 

controlled than with the thresholded brush. The 

competing technique mitigates many of the texture-related 

problems because both paint and not-paint are working 

through the same textures. The result is a brush that 

respects edges but has a smoother more controlled feel 

than Photoshop’s color replacement brush. 

 

The brush radius in figure 20 shows why our algorithm is 

not exactly a tri-map. The mouse point is in the center of 

the brush circle and is inside the mushroom cap. This 

point should definitely be painted if we are trying to tint 

the cap. However, a majority of the pixels on the 

perimeter of the brush are also on the mushroom cap. 

They therefore are not background pixels as in the tri-map 

formulation. They are labeled is pixels not to be painted 

for this particular brush point. As the brush moves and 

successive new brush points are established, the perimeter 

also moves as does the paint. The algorithm in figure 19 is 

to calculate a brush shape for a given mouse point, not for 

the entire task. At each mouse movement event this 

algorithm is rerun to establish a new brush shape. This 

does not behave like a tri-map it behaves like a brush. The 

total task is controlled by the user’s brush movement, not 

the algorithm.  

 

A second issue is that the pixels of the perimeter are very 

similar to the mouse point pixel. In addition most of the 

pixels outside of the mushroom cap are in the stem. The 

color and texture of the stem is very similar to that of the 

cap. This pixel similarity between paint and not-paint 

pixels eliminates the possibility of training a 

foreground/background model as is done in most tri-map 

implementations. The brush model of interaction 

precludes such model development. In figure 3 where we 

are tinting hair with contrast, the entire brush region 

usually involves hair and thus there is no intrinsic 

difference in the paint/not-paint pixels. With the face in 

figure 4 the majority of the pixels are flesh color. The 

algorithm is just respecting the wrinkles with no true 

foreground or background differences to model. 

 

For our brush technique to work, we cannot directly 

modify the image on every mouse movement. The reason 

is that the modified pixels become more uniform in color 

from preceding iterations of the brush technique. This 

causes everything to behave badly. The selection 

(represented by pixel State in the algorithms) must be 

separate from the image and the desired effect, paint, tint, 

blend, lighten, darken, etc. must be performed on a 

transparent overlay plane.  

 

As can be seen in figure 20, the perimeter of the brush is 

about twice as far out from the mouse point as the actual 

extent of the paint. This can be disconcerting to users 

because the perimeter circle gives little indication of the 

extent of the brush. This is easily resolved by initializing 

all perimeter seed points with a cost equal to the radius of 

the brush. By “handicapping” the perimeter pixels the 

paint region will push out closer to the perimeter. On a 

completely smooth region the brush pushes out to the 

perimeter. This cost seeding does not change the behavior 

of the brush but makes the perimeter more understandable 

to the user. 

 

Alpha brush values 
In many cases a hard edged brush is not desired. In figure 

3 the contrast should fade smoothly into the untinted hair. 

In figure 2 the darkening of the background should fade 

smoothly into the unmodified portions of the background. 

In figure 4 the blurring effect should fade smoothly into 

the unmodified skin. Our alpha blending approach is 

modeled on the soft brushes of paint programs such as 

Photoshop. The alpha matting problem of selecting 

regions with fuzzy edges is an important but different 

problem from our alpha brushes. For that problem we 

would recommend Soft Scissors. Our alpha blending goal 

is to remove harsh edges from our brushes. What we want 

is an alpha value of 1.0 at the mouse point that drops off 



slowly across smooth areas and quite suddenly against 

sharp edges. We want our brush edges to be crisp against 

image edges and a smooth gradient in smooth regions. 

 

Many alpha matting approaches use the foreground/ 

background model to guide the alpha interpolation. 

However, as described earlier we have no such model. 

Once a brush is formed we do have a set of pixels defined 

as inside and outside of the brush. We can use a 

neighborhood of these pixels to define the alpha value. 

For each pixel C that is inside the brush we define a 

voting window around that pixel. Controlling the size W 

of this window controls the width of the blurred region at 

the edges of the brush. A W of 0.0 will create a hard-

edged brush. W is never larger than the distance between 

C and the mouse point M.  

 

Figure 21 shows the algorithm to compute alpha for each 

pixel in the brush. The general idea is to sum weighted 

votes for all inside pixels around some pixel C and a 

separate vote for all outside pixels in the window. The 

votes are weighted by a combination of the geometric 

distance between the pixels (farther away have less 

influence) and color difference (pixels that look different 

have less influence). It is the color difference term that 

causes a sharp falloff of alpha against strong edges. The 

alpha value is determined by the percentage of the vote 

belonging to inside pixels. However, because only inside 

pixels are considered for alpha values, they never have all 

outside neighbors and thus alpha cannot reach zero. 

Experience shows that inside pixels usually have at least 

33% inside pixel neighbors. The inside neighbors (iN) 

term accounts for this and stretches alpha down to an 

appropriate range. 

 

M = The mouse point for the current brush instance 
I = The image being painted 
B = computeBrush(M, I) // pixels in the brush 
W = The maximum size of the voting window 
foreach pixel C in B 
{ w=min(W, dist(C,M)-1 );  
 iVote=0; oVote=0; 
 foreach pixel F such that dist(C,F)<=w 
 { vote=(1/(1-dist(C,F))*(1/(1+colorDiff(C,F))); 
  if (F is in B) 
   iVote+=vote 
  else 
   oVote+=vote; 
 } 
 iN=.33; 
 C.alpha=1/(1-iN)*(iVote/(iVote+oVote)-iN); 
} 

Figure 21 – Computing Alpha for a brush 

 

Paint compositing 
The brush algorithm described above gives us a map of 

alpha values in the region surrounding the mouse point. 

This is computed on each mouse-move event, generating 

a new brush map (B) each time. All of the brush maps are 

accumulated to form the paint map (P) which is a set of 

alpha values for the entire image. Given the paint map, an 

image (I) and an effect to be painted (E) we compute a 

displayed image (D) to be shown to the user. In addition, 

there is an opacity value (O) that controls the maximum 

opacity value of the effect being painted. This is 

equivalent to brush or layer transparency in many painting 

programs. For example in figure 2 we want to darken the 

background not obscure it. Using a value of O that is 

closer to 0.2 will accomplish this. Given these values the 

compositing function[9] to produce D is: 

 

 Dx,y=(1-O*Px,y)*Ix,y+O*Px,y*Ex,y 

 

The effect image E can be any image. For traditional 

painting it can be a solid color. For smoothing tasks such 

as figure 4 it can be a Gaussian blur of image I. It can also 

be an image or texture to be painted into a region. At each 

mouse movement the brush map B is recomputed from I 

and the current mouse position. Note that image I is not 

modified during the process because the construction of 

the brush map B on each mouse move is dependent upon 

I. Successive modifications to I would seriously distort 

the brush behavior. Each brush map instance Bi is 

composited with the previous paint map Pi-1 to produce a 

new paint map Pi. The function is: 

 

 Pi=max( Bi , Pi-1 ) 

 

Thus the paint map P accumulates alpha values that are 

used to blend the effect with the image. At some point the 

image I is replaced by D. This can be at mouse-up but we 

have found it best to defer this longer until an entire paint 

task is complete. 

 

At the beginning of this paper we indicated that the right 

mouse button would perform “unpainting” to correct user 

errors. For unpainting we use the same brush map, but we 

composite it with the paint map using the function: 

 

 Pi=min( 1-Bi , Pi-1 ) 

 

Unlike the tri-map techniques, it is not the algorithm but 

the successive mouse movements of the user that 

ultimately define where an effect is to be painted. Thus 

there never is a foreground/background classification, 

only successive brush maps that alter their shape based on 

the edges in the underlying image. This provides users 

with assisted control  of their task. 

 

EVALUATION 
To evaluate our fill brush algorithm we look both at its 

algorithmic complexity and a user study that compares the 

brush to other selection techniques. The space complexity 

of the brush is dependent upon the maximum size of the 



queue. The queue can never have more entries than there 

are pixels inside of the radius of the brush. This makes the 

maximum space complexity O( R2) The actual behavior 

is much better than that. The pixels in the queue are on 

the frontiers of the region moving in from the perimeter 

and out from the mouse point. The number of pixels on 

these frontiers at any point in time rarely exceeds the 

circumference of the brush. This makes the average space 

complexity less than O(2 R). 

 

The algorithmic complexity involves the number of pixels 

visited and the complexity of the queue’s add() and next() 

methods. The algorithm visits every pixel at most 4 or 8 

times depending on whether diagonal pixels are 

considered neighbors. Every pixel will be visited at least 

once. The complexity of the queue is the log of the 

number of items in the queue. The maximum algorithmic 

complexity therefore is O( R2*log( R2) ). 

 

User experience 
For our user study we compared three techniques.  

 Fill Brushes using the perimeter competition 

algorithm. 

 Photoshop’s Magnetic Lasso, which is an 

implementation of Intelligent Scissors 

 Photo Crop Editor, which is an implementation 

of Lazy Snapping. 

We did not have readily available implementations of the 

other graph-cut algorithms. The problems that we 

described earlier and the behavior of the algorithms will 

be similar among all graph-cut techniques. They vary in 

the energy function that they minimize and in how they 

achieve interactive speeds. The problems of these 

algorithms lie in their doing different things than the user 

intends. 

 

We used six images from the Berkeley segmentation data 

set [2] with each of 9 subjects. The subjects were all 

university students with no more than casual experience 

in segmenting images. Each subject received the images 

in the same order. For a given subject/image the 

algorithms were presented in random order. Because we 

had no mechanism for evaluating selection accuracy over 

time we give the users a specific amount of time and 

instructed them to achieve as much accuracy as possible 

within that time. We then compared the user’s results to 

the average Berkeley annotation. Figure 22 shows the 

average edge agreement of each technique at accuracy 

distances of 3 through 6 pixels. The various 

segmentations provided in the Berkeley data did not 

themselves agree at accuracy less than 3 pixel which 

would make more accurate comparisons spurious. Our 

brush technique shows a good match to the gold standard. 

All of these differences are statistically significant 

(p<0.01). When asked, eight of the users preferred the 

brush to the other two techniques. One subject thought the 

automatic snapping to the image was more fun. Our 

conclusion is that the brush technique is as accurate or 

better than others but that its key contribution is the 

interactive control that supports. 

 

D Brush Lasso diff   Snap diff 

3 98% 95% 3%   93% 5% 

4 99% 96% 3%   96% 3% 

5 99% 96% 3%   97% 2% 

6 99% 96% 3%   97% 2% 

Figure 22 – Edge agreement in neighborhoods 0-6 pixels 
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