
Edge-Respecting Brushes
Dan R. Olsen Jr., Mitchell K. Harris

Computer Science Department

Brigham Young University

olsen@cs.byu.edu

ABSTRACT
Digital paint is one of the more successful interactive

applications of computing. Brushes that apply various

effects to an image have been central to this success.

Current painting techniques ignore the underlying image.

By considering that image we can help the user paint

more effectively. There are algorithms that assist in

selecting regions to paint including flood fill, intelligent

scissors and graph cut. Selected regions and the

algorithms to create them introduce conceptual layers

between the user and the painting task. We propose a

series of “edge-respecting brushes” that spread paint or

other effects according to the edges and texture of the

image being modified. This restores the simple painting

metaphor while providing assistance in working with the

shapes already in the image. Our most successful fill

brush algorithm uses competing least-cost-paths to

identify what should be selected and what should not.

Author Keywords
Paint, flood-fill, intelligent scissors, min-graph-cut, least-

cost painting

ACM Classification Keywords
H.5.2 User Interfaces

INTRODUCTION
One of the most common tasks when interacting with

images is the selection of a region to be modified. This

can be as simple as painting fills into areas of a hand-

drawn piece of animation or as complex as trying to

separate a person’s face from a noisy background. This

basic task goes under the names of painting (if the task is

to change the color of selected pixels), selecting (if a

specific region is desired) or matting (when trying to

separate a foreground object from background).

Fundamentally these are all the same task which is to

select some set of pixels and then apply some effect to

those pixels. Frequently we combine selection and effect,

as when painting with a brush. The brush shape and

mouse position specifies the pixel selection and the paint

is the effect. At other times we select separately and then

apply an effect. We might “lasso” a region (selection) and

then darken it (effect).

In this paper we present “edge-respecting brushes” as a

new technique for smoothly combining intelligent

selection and effect. The following figures illustrate the

kind of edge-respecting brushing effects that are of

interest. In figures 1-3 we show the original, the brush

effect and an exaggerated color to clearly show the brush.

Figure 1 uses a transparent dark brown brush to paint a

tan onto skin. Edge-awareness helps to avoid the dress

and background. Figure 2 shows a brush being used to

darken selected areas of the background for contrast

without infringing on the skin and blouse. Figure 3 uses a

brush whose effect is to enhance contrast. We brush on

regions of the hair where we want to show highlights. The

edge-respecting algorithm helps us avoid the face and

eyebrows.

Figure 1 – Brushing on a tan on only the skin

Figure 2 – Brushing in background darkening

Figure 3 – Brushing in a contrast effect (hair only)

Figure 4 – Brushing away selected wrinkles with blur

Figure 4 shows a brush with a blurring effect to remove

wrinkles. Too many wrinkles show age while a few key

wrinkles show character. The edge-aware brush allows

the artist to selectively remove wrinkles without

eliminating the key details. We want smooth control over

 Keep this space free for the ACM copyright notice.

the algorithm as the artist decides which edges to remove

and which to retain.

Interactive behavior
Interactively our fill brushes behave like the brushes

found in most painting applications. The user presses a

mouse (or pen) button and then moves the mouse around

while the brush selects the pixels to be modified. The

difference is that our fill brushes pay attention to the

underlying image and adapt their pixel selection based on

the mouse location and the texture/edges in the image.

Though in figure 2, the brush diameter is large the

selection respects the edge between the blouse and the

background. In figure 1 we also see texture and edges in

the background. Though these edges are not as strong as

the background/blouse edge, they do impact the

algorithm. In figure 3 the hair provides many edges to our

algorithm. The key idea in both of these examples is that

the user has control of the brush position and can move

over or avoid edges as desired. It is the user manipulating

the brush rather than the algorithm that ultimately decides

which pixels are selected. In figure 4 an algorithm would

have a difficult time deciding which wrinkles to keep for

character and which to blur to eliminate age. Our brush

algorithm can assist the user in retaining important details

while allowing them to brush over details that should be

ignored.

Figure 5 – Filling a line drawing

Figure 6 – Tinting a textured object

The task in figure 5 is to take a cartoon inking and then

color the face flesh tone without coloring the eyes, hair or

mouth. The coloring of a line drawing is a common task

in animation and commercial drawing. The task is

characterized by very little texture, strong edges and lots

of implied connections across gaps in the sketch. The task

in figure 6 is to tint a mushroom blue. This is not a very

common task but it is an example of working with highly

textured objects. The blue tint is to make the selection

clearly visible in the paper for ease of discussion.

PRIOR WORK
Though our technique is a brush and functions with a

“painting” metaphor the key prior work is actually in

selection. There are five prior techniques of interest: flood

fill, boundary specification, tri-maps, bilateral grids,

intelligent paint and quick select.

Flood fill
The earliest automatic pixel selection tool was the flood

fill. It is found in virtually every paint application. The

mouse down point (MDP) acquires a base color (BC)

from the pixel underneath the mouse. A recursive search

is then performed to select every pixel that is similar to

BC and adjacent to a pixel that is already selected. This

algorithm suffers from two failings. The first is that if

there are any “leaks” in the edges that enclose a region,

the flood fill can select large areas of the image that are

unintended. This explosive flooding is very frustrating to

control. In figure 7 a flood fill, initiated at the cross,

spreads through the gaps in the lines filling almost all of

the drawing. Only the left eye escaped. Photoshop’s color

replacement brush imposes a radius limit on such fills but

still leaks through gaps in an edge.

Figure 7 – Flood fill escaping through boundary gaps

A second failing of the flood fill is that it can leave

speckles and islands in regions that appeared to the user to

be smooth. The image on the left of figure 8 shows a

drawing that appears smooth yet the flood fill on the right

shows gaps and speckles. The tedious task of removing

these eliminates most of the advantages of using flood fill.

Figure 8 – Gaps and speckles from flood fill

Figure 9 shows even greater difficulties when texture is

present. Additive fill selection (shift-click) was invoked 8

times using Photoshop’s Magic Wand (flood fill) to get

the selection shown in figure 9. The high texture

frequently blocks the fill algorithm leaving regions

isolated. Each isolated speckle must be individually filled

or painted to complete the task. The most important

interactive deficiency is the loss of control by the user.

When the fill is initiated, the user is frequently surprised

by the final result. This lack of predictability in the

behavior is a challenge to usability.

Figure 9 – Flood fill speckles

Boundary specification
Specification of a selected region by defining its boundary

is also a very old technique. This technique is

characterized by drawing the perimeter outline of the

selected region. This “lasso” technique is a very slow and

tedious process for complex regions.

Selection boundaries can be improved by algorithms that

optimize selection paths to follow gradient (edge)

boundaries. Snakes [5, 12] take an initial selection

boundary and improve it by moving to stronger nearby

edges. This suffers from a lack of user control when the

desired boundary is not as strong as another nearby

boundary. The “snapping” of an edge to a different one

can be welcome or disconcerting depending upon the

match between the snap and the desired result.

Better interactive control is provided by Intelligent

Scissors [7], or the Magnetic Lasso (as it is known in

Photoshop). In this technique the user draws the edge with

the mouse, but the actual boundary follows the locally

strongest gradient edge. This boundary is continuously

echoed to the user so that they can see what will happen

and attempt to correct the selected edge by moving the

mouse. Techniques such as “freezing” or clicking on key

points help the selected edge to remain locally stable and

stick to key details. The continuous interactive echo of the

edge placement is very helpful to the user and has made

this a popular tool.

Figure 10 – Intelligent Scissors taking shortcuts

Edge optimization struggles with highly convoluted edges

such as shown in figure 10 because the algorithm tries to

take short cuts if there is an edge to follow. This can be

corrected by manually setting anchor points in the tips

and crevices, but this is more interactive work. Figure 11

shows the lower edge of our mushroom that is highly

scalloped. The selection is indicated by the dotted line.

This scalloping is a delicate detail that we do not want to

lose, but the edge optimization of intelligent scissors

smoothes it out and ignores the fine detail. On the

opposite side of the stem it has again cheated on a corner.

Figure 11 – Detail smoothing from optimization

Intelligent scissors also has problems with the cartoon

face. It is easy to drag the control around the edges of the

face, but the resulting fill covers all of the facial detail. To

achieve the desired result we must use the tool to unselect

around all the edges of each eyebrow, mouth or eye line

so that the line is not covered. This is very time

consuming. In this example, intelligent scissors may also

skip over to the opposite side of a line we are trying to

avoid if the other side offers a more economical path.

This is very unsatisfactory.

The background contrast problem in figure 3 is also not

well suited to boundary techniques. The width and

intensity of the contrast region are an artistic choice that

must be made continuously as the user views the resulting

effect. The problem is that we have a painting task to

which we are trying to apply an edge-defining tool. They

are not well matched. All boundary specification

techniques separate the selection from the effect.

Tri-map techniques
A number of interactive image segmentation systems

have been developed around tri-map specification. Many

of these use the graph-cut algorithm [3]. The basic idea is

that the user designates some pixels as inside and some as

outside. This forms a tri-map of foreground, background

and undecided pixels. The image is viewed as a connected

graph with pixels forming vertices and pixel adjacency

forming the edges. Generally an edge cost function is

computed by comparing the foreground and background

training pixels. The selection boundary is then determined

as the minimal cut of this graph that separates inside and

outside training pixels. Prominent examples of this

technique are Lazy Snapping [6] and GrabCut [10].

Graph-cut algorithms vary based on the energy function

that they attempt to minimize and various ways of

speeding up the calculation of the minimal cut of the

graph. The graph-cut algorithm itself is quite complex.

Figure 12 shows the training strokes necessary to produce

a reasonable selection of the face without including the

eyes, hair or mouth using an implementation of Lazy

Snapping. Green strokes indicate pixels that are outside

and red strokes indicate inside. The number of strokes is

quite modest and little accuracy is required of the user.

Problems occur at the corners of the eyes where the

automatic algorithm fights with the desires of the user as

to where the edge should be. The implementation that we

used also steals 1-2 pixels out of the lines making them

thinner.

Figure 12 – Lazy Snapping of the face

The mushroom task was more difficult using Lazy

Snapping. The leaf on the right of figure 6 was initially

selected as part of the mushroom though it is quite distant

from it. The reason is its similar color. Marking the leaf as

unselected then caused regions of the mushroom to be

unselected. Correcting the mushroom regions caused

problems again with the leaf. Several back and forth

operations finally corrected the problem. When a user

makes a mark in one region of the screen and the

selection changes in another, there is a serious usability

problem. The user is now required to continuously scan

the entire image for new errors after each correction.

Figure 13 shows a close-up of the mushroom stem that the

algorithm refused to correct. Note that the dotted selection

line cuts off before the bottom of the stem where the

algorithm gets confused by the branch protruding across

the stem. There are training strokes in the lower area but

the algorithm has chosen to ignore them so as to optimize

its function. Automatically computed selections can save

users significant amounts of time.

Figure 13 – Lazy Snapping selection failure.

There are a variety of formulations used to produce an

appropriate selection from a tri-map (inside, outside,

unknown). Each of these optimizes in various ways to

eliminate deficiencies of various algorithms. Many of the

problems demonstrated above are solved in other

formulations. There is still a fundamental problem with

the tri-map technique’s interactive style. The user

specifies inside/outside with some strokes and the

algorithm then makes its best choice. If the image, task

and algorithm are well matched then the result is highly

predictable and highly satisfactory. If they are not well

matched then the result is frequently not predictable. This

leads to a user/algorithm negotiation through additional

input as the user tries to convince the algorithm to adopt a

more acceptable selection. This is particularly

problematic in cases like figures 3 and 4 where the user is

not sure what the right choice should be until the results

are seen.

The fault is not so much in the matting algorithm as in the

tri-map approach to interaction. We need an approach that

is interactively more fluid than the tri-map offers. The

problem is that the user is not painting or selecting an

image, they are training an algorithm to paint or select an

image.

Early tri-map approaches created binary selections which

are not good in figures 2 or 4. Improvements to provide

alpha matte selections can produce nice results but are

generally not interactive at interactive speeds. Some

algorithms take almost 2 minutes to solve. We have not

referenced these numerous algorithms because they are

not appropriate to our task.

A variation on the tri-map strategy is Soft Scissors[11]. In

this approach the user is given a wide brush with which to

trace out the boundary of a region. At each movement of

the brush some pixels on the brush edge are identified as

background and others foreground with the interior pixels

identified as unknown. The tri-map selection is then

solved locally, providing a more interactive selection

process. However, if the selection is not what the user

desired, the user has less control than before in correcting

the choice. Interactivity is increased by the real-time

nature of the algorithm but control is not. Soft Scissors

has the nice property of adapting to fuzzy edges such as

fur where the selection may be indistinct.

Another property of tri-map algorithms that will become

important in our brush implementation is the tri-map

model for inside/outside. All of these algorithms take the

pixels identified as inside and those identified as outside

and develop a model for evaluating whether a given pixel

is likely to be inside or outside. The algorithms used to

develop such models are quite diverse. They might be as

simple as an average color for inside and outside or more

powerful machine learning models. The key point is that

they all assume that a sample of outside pixels is known

and a sample of inside pixels is also known. In our brush

strategy, these facts are not known, primarily because the

users themselves may not know them until they perceive

the resulting effects of their brush.

One tri-map technique proposed by Bai and Sapiro [1] is

of interest because instead of graph-cut it uses a geodesic

distance. A pixel is labeled foreground or background

depending upon whether it is closest to a foreground or

background pixel using a geodesic distance. We can

compute the distance between two pixels by summing the

pixel transitions along the least cost path. If the pixel

transition costs are weighted by the change in pixel color

across the edge or by the similarity of the new pixel to the

original source pixel, we have a geodesic distance. Paths

that must go through dissimilar pixels acquire a greater

cost and thus a greater distance. If we seed Dijkstra’s

algorithm with foreground and background pixels it will

compute the least cost path to each pixel being considered

and thus produce a labeling. We will use a similar

approach to this in our brush formulation.

The indirection problem

All of the tri-map techniques share the indirection

problem which is that the user is not painting but rather

training an algorithm that then does the painting. The user

is not applying a desired effect to an image but rather

trying to coax an algorithm into generating the desired

effect. One advantage of tri-map interaction is its brevity

of expression for many situations. A few strokes of inside

and outside scribbles can quickly generate a good

selection region. However, in figures 2, 3 and 4 this is

much more difficult because of the user judgment

required to get it right. The indirect UI offered by tri-

maps in problematic in many situations.

Painting methods
Some prior methods do not use tri-maps but instead

provide a painting metaphor over an underlying algorithm

and data structure. Intelligent paint [8] works by finding

“watershed” regions of similar color and filling those

regions as the user moves a brush through them. This

algorithm has the same automation properties as graph-

cut in that the user intent may not match the algorithm’s

assumptions. However, it does have a more paint-oriented

user interface than the graph-cut techniques. It also

behaves locally rather than having input in one region

causing changes in a totally different region. It does,

however, have a “surging” problem. That is as the brush

moves from region to region the paint appears to surge

into new regions. This discontinuous flow of paint is

problematic for users. Photoshop’s color replacement

brush exhibits this surging behavior. Some of our early

brushes had similar problems as will be discussed later.

The bilateral grids of Chen et. al.[4] also support a

painting style of interaction. A brush’s transparency can

sometimes be modeled as a Gaussian function of the

distance between a brush’s center and a pixel to be

painted. This formulation found in many paint programs

ignores the strong edges found in many images and paints

or blurs across them. The bilateral filter adds a second

term which is a Gaussian of the distance in color space

rather than pixel space. This then sharply reduces a

brush’s effect on pixels that are very different in color.

This is described by Chen et. al. as an “edge-aware”

brush. However, unlike the graph-cut algorithms that truly

find edges, this algorithm is color difference aware rather

than edge-aware, which is not quite the same thing. If one

is painting flesh tone onto the cartoon face in figure 12

the bilateral filter will not paint the lines (a good thing)

but if the brush got too close to the hair line, for example,

the brush would jump over the line (a bad thing) because

the white pixels in the hair area are not very different

from the brush pixel. A similar behavior occurs in

Photoshop’s color replacement brush in “discontiguous”

mode.

The bilateral filter on its own is too expensive for

interactive work. The bilateral grid is a data structure that

renders bilateral filters fast enough to be used in a

painting interaction if the GPU of a graphics card is

available for the computation.

Figure 14 – Quick Select moving beyond the brush track

Quick Select
Photoshop CS3 has a Quick Select tool that allows a user

to “paint” a selection using a brush. From the pixels that

the brush passes over the extent of the selection is

inferred. The algorithm for this is not public. This

technique has a nice interactive feel. This technique is an

“eager” technique in that it tries to reach out as far as

indicated by the pixels that have been brushed over. In

figure 14 the dark streak shows the pixels that the user

passed the brush over. The dotted line indicates the

inferred selected region. This algorithm has the same

surging property as intelligent paint. As the user moves

the brush the region tends to jump out in ways that are

reasonable but not always predictable. It does have a

“subtract selection” mode where the user can push back to

unselect regions that were too aggressively selected.

As with the tri-map algorithms there is still an indirection

issue in its interactive style. The user pushes around the

selection edge until an appropriate edge is produced and

then the effect is applied to the selected region. We want a

method with more direct control and simultaneous with

the desired effect.

BRUSH DEVELOPMENT
In this paper we describe a brush technique for filling,

tinting, selecting, blurring or any other effect that the user

might choose. The role of the brush is to select pixels to

be modified and the apply the effect. What we want is a

technique that is very easy to learn and very easy for the

user to control. We see this issue of user control as being

problematic in the more automated techniques.

User interface
Our user interface is quite simple. When the left mouse

button (or pen tip button) is down the brush is engaged.

Starting from the mouse position the brush pushes

outwards to select the pixels that are to be modified. This

is much like water color flowing out from a brush onto

damp paper. As pixels are selected, the desired effect

(paint, tint, blur, select, etc) is applied and feedback

supplied to the user. Each time the mouse moves, the

brush pixels are reselected using the brush’s algorithm.

The pixel modification effect is not confirmed into the

image until explicitly requested later by the user. The

modified pixels are stored in a separate display layer.

Using the right mouse button applies the brush selection

in exactly the same way except that the pixels are

unselected rather than selected. This provides a natural

mechanism for undoing any mistakes. This symmetric

brush behavior has been very effective for our users

because mistakes do regularly occur. Reversing the

mistake is conceptually simpler than undoing the last

stroke because it is pixels that are of interest to the user,

not the paint strokes.

Lastly our brushes have a “radius,” which defines the

extent of the brush’s selection behavior. This is analogous

to the radius of a traditional round brush but not exactly

so. We have attached the radius adjustment to the mouse

wheel for easy manipulation. The radius can also be

associated with pen pressure or adjusted by other devices

with the non-dominant hand. This user interface is not

particularly novel but it is the foundation for all of the

techniques that follow.

Simple cost-threshold-fill
Our first fill brush technique uses Dijkstra’s algorithm to

find the least cost path between the mouse position and

each of the surrounding pixels. This is very similar to the

traditional flood fill algorithm except for the termination

condition. The traditional queue-based flood fill ignores a

pixel P when the difference between its color and the

color of the mouse position pixel M is greater than some

threshold. Our cost-threshold-fill brush modifies this

flood fill algorithm slightly. It ignores a pixel P when the

least cost path between M and P exceeds a threshold. This

“fill until threshold” technique imposes the limits on the

brush while retaining many of the characteristics of a

flood fill that stops at strong edges. By moving the mouse

point M around, the brush moves naturally into new areas

under user control. This modified algorithm is shown in

figure 15.

mark all pixel states as “unknown”
M = info about the pixel under the mouse
T = cost threshold to limit the fill
Q = a new least cost priority queue
Q.add(M,0);
while (!Q.empty())
{ [P,cost]=Q.nextLeastCost();
 if (P.state==unknown && cost<=T)
 { P.state=selected;
 foreach N in P.neighbors()
 { Q.add(N, cost+C(M,P,N));
 }
 }
}

Figure 15 – Fill brush with cost

This accumulated cost is very close to the geodesic cost of

Bai and Sapiro. The heart of this brush algorithm is the

definition of the transition cost C of moving from pixel P

to a neighboring pixel N. The sum of these costs defines

the cost of some path. More formally we define

minPathCost(U,V,C) to be the cost of the minimal path

from pixel U to pixel V using the transition cost function

C. A pixel P is said to be selected by a brush if

minPathCost(M,P,C)<threshold where M is the mouse

position. The variation of Dijkstra’s algorithm shown in

figure 15 computes minPathCost by adding the result of

the transition cost function C at each step. This algorithm

actually defines a family of possible brushes depending

upon our choice for the function C.

We can start with a simple transition function. The

function baseCost(M, P, N)=diff(M.color,N.color) defines

the cost of moving from pixel P to pixel N as being the

difference between the color of M and the color of N.

Using baseCost by itself as the transition function, the

result is very similar to the traditional flood fill. The

difference is that small transition costs can accumulate to

terminate the fill rather than a single dominant difference

being the terminator as in flood fill. The problem is that

small transition costs may not accumulate fast enough to

provide good user control. On a smooth region of uniform

color the brush behaves like unconstrained flood fill

because the costs do not accumulate rapidly enough. Very

low transition costs in smooth regions allow the fill to

cover many pixels before exceeding the threshold. The

presence of texture will slow down the spread of the brush

and sharp edges will stop it. Figure 16 shows how the

brush flows wildly in smooth regions. The mouse point is

at the cross hair. This is similar to the frustration of wet-

on-wet watercolor where the flow of paint is difficult to

control. We refer to this unexpected flow of paint as

“surging”. It is very disconcerting to the user.

Figure 16 – Flowing problems with baseCost() brush

We can improve the brush’s behavior by modifying

baseCost() to include a term for the distance moved in the

pixel-to-pixel transition. The prevents wild surging but

still produces paint regions that vary widely depending on

the amount of texture accumulated in the cost. Mouse

point A in figure 17 is the origin of a brush using a

threshold of 44. The blend between transition cost and

distance is 0.5. Because the sky is relatively uniform the

brush spreads quite far up to the edge of the cupola.

Mouse point B is exactly the same brush in a more open

area that has little transition cost. Mouse point C is the

identical brush in a textured region.

Figure 17 – Variants in behavior with B=0.5 and T=44

Figure 18 shows another difficulty with this flooding

brush algorithm, which is that it tends to leave holes just

as the original flood fill did in figure 9. This is not very

satisfactory.

One variation is the maximum radius brush that uses the

modified cost function but also imposes a maximum

distance around the mouse point that restrains

uncontrolled surging. The problem with holes still

remains and a tendency when pushed close to a strong

edge to suddenly surge across in a way that feels very

uncontrolled to the user. This surging is similar in

behavior to Photoshop’s color replacement brush. The

color replacement brush attempts to resolve this problem

by giving the user indirect control of a threshold

parameter rather than as a natural part of the painting

process and is awkward to control.

Figure 18 – Flood brush blend effects

Perimeter competition
Our most effective brush technique is based on a

competition between paint and not-paint pixels. We use

an approach that is reminiscent of the tri-map, but as will

be discussed, there are important differences. In this

technique the mouse point is seeded as a paint (to be

selected) pixel, all of the points on the perimeter of the

brush are seeded as not-paint (not selected) pixels and all

other pixels are unknown. The algorithm tries to find the

best labeling (paint/not-paint) for all pixels inside the

brush radius by choosing paint or not-paint based on

which seed point is “nearest” the pixel using our cost

function described earlier. This is very much like the

geodesic distance approach. The algorithm is shown in

figure 19. Figure 20 shows this competing brush in action

and how it respects the scalloped edges of the mushroom

while providing user control of where to paint.

mark all pixel states as “unknown”
M = info about the pixel under the mouse
Q = a new least cost priority queue
R = radius of the brush
Q.add(M,0,paint);
foreach pixel C on circumference of the brush
{ Q.add(C,0,not_paint);
}
while (!Q.empty())
{ [P, cost, source]=Q.nextLeastCost();
 if (P.state==unknown)
 { P.state=source;
 foreach N in P.neighbors()
 { if (dist(N,M)<=radius)
 { Q.add(N,
 cost
 +diff(N.color,P.color)
 +dist(N,P),
 source);
 }
 }
 }
}

Figure 19 – Competing fill algorithm

B

C

A

Figure 20 – Competing fill brush

The final state of a pixel P using the algorithm in figure

19 is.

if (minPathCost(M,P,colorDif())<minPathCost(C,P,colorDiff())

 paint

else

 not-paint

This competition approach solves many of the problems

with our other fill brush techniques. The isolated

speckling problem does not occur because if an island is

surrounded by paint pixels the least cost path to all pixels

in the island must come through one of those paint pixels.

The island therefore becomes paint rather than remaining

speckled. The surging problem when crossing an edge is

also mitigated. When the closeness of the mouse to an

edge causes selection to overrun the edge into a smooth

area, the competing paths from the not-paint perimeter are

also moving across that same smooth area. The effect of

pushing across an edge is much more subtle and

controlled than with the thresholded brush. The

competing technique mitigates many of the texture-related

problems because both paint and not-paint are working

through the same textures. The result is a brush that

respects edges but has a smoother more controlled feel

than Photoshop’s color replacement brush.

The brush radius in figure 20 shows why our algorithm is

not exactly a tri-map. The mouse point is in the center of

the brush circle and is inside the mushroom cap. This

point should definitely be painted if we are trying to tint

the cap. However, a majority of the pixels on the

perimeter of the brush are also on the mushroom cap.

They therefore are not background pixels as in the tri-map

formulation. They are labeled is pixels not to be painted

for this particular brush point. As the brush moves and

successive new brush points are established, the perimeter

also moves as does the paint. The algorithm in figure 19 is

to calculate a brush shape for a given mouse point, not for

the entire task. At each mouse movement event this

algorithm is rerun to establish a new brush shape. This

does not behave like a tri-map it behaves like a brush. The

total task is controlled by the user’s brush movement, not

the algorithm.

A second issue is that the pixels of the perimeter are very

similar to the mouse point pixel. In addition most of the

pixels outside of the mushroom cap are in the stem. The

color and texture of the stem is very similar to that of the

cap. This pixel similarity between paint and not-paint

pixels eliminates the possibility of training a

foreground/background model as is done in most tri-map

implementations. The brush model of interaction

precludes such model development. In figure 3 where we

are tinting hair with contrast, the entire brush region

usually involves hair and thus there is no intrinsic

difference in the paint/not-paint pixels. With the face in

figure 4 the majority of the pixels are flesh color. The

algorithm is just respecting the wrinkles with no true

foreground or background differences to model.

For our brush technique to work, we cannot directly

modify the image on every mouse movement. The reason

is that the modified pixels become more uniform in color

from preceding iterations of the brush technique. This

causes everything to behave badly. The selection

(represented by pixel State in the algorithms) must be

separate from the image and the desired effect, paint, tint,

blend, lighten, darken, etc. must be performed on a

transparent overlay plane.

As can be seen in figure 20, the perimeter of the brush is

about twice as far out from the mouse point as the actual

extent of the paint. This can be disconcerting to users

because the perimeter circle gives little indication of the

extent of the brush. This is easily resolved by initializing

all perimeter seed points with a cost equal to the radius of

the brush. By “handicapping” the perimeter pixels the

paint region will push out closer to the perimeter. On a

completely smooth region the brush pushes out to the

perimeter. This cost seeding does not change the behavior

of the brush but makes the perimeter more understandable

to the user.

Alpha brush values
In many cases a hard edged brush is not desired. In figure

3 the contrast should fade smoothly into the untinted hair.

In figure 2 the darkening of the background should fade

smoothly into the unmodified portions of the background.

In figure 4 the blurring effect should fade smoothly into

the unmodified skin. Our alpha blending approach is

modeled on the soft brushes of paint programs such as

Photoshop. The alpha matting problem of selecting

regions with fuzzy edges is an important but different

problem from our alpha brushes. For that problem we

would recommend Soft Scissors. Our alpha blending goal

is to remove harsh edges from our brushes. What we want

is an alpha value of 1.0 at the mouse point that drops off

slowly across smooth areas and quite suddenly against

sharp edges. We want our brush edges to be crisp against

image edges and a smooth gradient in smooth regions.

Many alpha matting approaches use the foreground/

background model to guide the alpha interpolation.

However, as described earlier we have no such model.

Once a brush is formed we do have a set of pixels defined

as inside and outside of the brush. We can use a

neighborhood of these pixels to define the alpha value.

For each pixel C that is inside the brush we define a

voting window around that pixel. Controlling the size W

of this window controls the width of the blurred region at

the edges of the brush. A W of 0.0 will create a hard-

edged brush. W is never larger than the distance between

C and the mouse point M.

Figure 21 shows the algorithm to compute alpha for each

pixel in the brush. The general idea is to sum weighted

votes for all inside pixels around some pixel C and a

separate vote for all outside pixels in the window. The

votes are weighted by a combination of the geometric

distance between the pixels (farther away have less

influence) and color difference (pixels that look different

have less influence). It is the color difference term that

causes a sharp falloff of alpha against strong edges. The

alpha value is determined by the percentage of the vote

belonging to inside pixels. However, because only inside

pixels are considered for alpha values, they never have all

outside neighbors and thus alpha cannot reach zero.

Experience shows that inside pixels usually have at least

33% inside pixel neighbors. The inside neighbors (iN)

term accounts for this and stretches alpha down to an

appropriate range.

M = The mouse point for the current brush instance
I = The image being painted
B = computeBrush(M, I) // pixels in the brush
W = The maximum size of the voting window
foreach pixel C in B
{ w=min(W, dist(C,M)-1);
 iVote=0; oVote=0;
 foreach pixel F such that dist(C,F)<=w
 { vote=(1/(1-dist(C,F))*(1/(1+colorDiff(C,F)));
 if (F is in B)
 iVote+=vote
 else
 oVote+=vote;
 }
 iN=.33;
 C.alpha=1/(1-iN)*(iVote/(iVote+oVote)-iN);
}

Figure 21 – Computing Alpha for a brush

Paint compositing
The brush algorithm described above gives us a map of

alpha values in the region surrounding the mouse point.

This is computed on each mouse-move event, generating

a new brush map (B) each time. All of the brush maps are

accumulated to form the paint map (P) which is a set of

alpha values for the entire image. Given the paint map, an

image (I) and an effect to be painted (E) we compute a

displayed image (D) to be shown to the user. In addition,

there is an opacity value (O) that controls the maximum

opacity value of the effect being painted. This is

equivalent to brush or layer transparency in many painting

programs. For example in figure 2 we want to darken the

background not obscure it. Using a value of O that is

closer to 0.2 will accomplish this. Given these values the

compositing function[9] to produce D is:

 Dx,y=(1-O*Px,y)*Ix,y+O*Px,y*Ex,y

The effect image E can be any image. For traditional

painting it can be a solid color. For smoothing tasks such

as figure 4 it can be a Gaussian blur of image I. It can also

be an image or texture to be painted into a region. At each

mouse movement the brush map B is recomputed from I

and the current mouse position. Note that image I is not

modified during the process because the construction of

the brush map B on each mouse move is dependent upon

I. Successive modifications to I would seriously distort

the brush behavior. Each brush map instance Bi is

composited with the previous paint map Pi-1 to produce a

new paint map Pi. The function is:

 Pi=max(Bi , Pi-1)

Thus the paint map P accumulates alpha values that are

used to blend the effect with the image. At some point the

image I is replaced by D. This can be at mouse-up but we

have found it best to defer this longer until an entire paint

task is complete.

At the beginning of this paper we indicated that the right

mouse button would perform “unpainting” to correct user

errors. For unpainting we use the same brush map, but we

composite it with the paint map using the function:

 Pi=min(1-Bi , Pi-1)

Unlike the tri-map techniques, it is not the algorithm but

the successive mouse movements of the user that

ultimately define where an effect is to be painted. Thus

there never is a foreground/background classification,

only successive brush maps that alter their shape based on

the edges in the underlying image. This provides users

with assisted control of their task.

EVALUATION
To evaluate our fill brush algorithm we look both at its

algorithmic complexity and a user study that compares the

brush to other selection techniques. The space complexity

of the brush is dependent upon the maximum size of the

queue. The queue can never have more entries than there

are pixels inside of the radius of the brush. This makes the

maximum space complexity O(R2) The actual behavior

is much better than that. The pixels in the queue are on

the frontiers of the region moving in from the perimeter

and out from the mouse point. The number of pixels on

these frontiers at any point in time rarely exceeds the

circumference of the brush. This makes the average space

complexity less than O(2 R).

The algorithmic complexity involves the number of pixels

visited and the complexity of the queue’s add() and next()

methods. The algorithm visits every pixel at most 4 or 8

times depending on whether diagonal pixels are

considered neighbors. Every pixel will be visited at least

once. The complexity of the queue is the log of the

number of items in the queue. The maximum algorithmic

complexity therefore is O(R2*log(R2)).

User experience
For our user study we compared three techniques.

 Fill Brushes using the perimeter competition

algorithm.

 Photoshop’s Magnetic Lasso, which is an

implementation of Intelligent Scissors

 Photo Crop Editor, which is an implementation

of Lazy Snapping.

We did not have readily available implementations of the

other graph-cut algorithms. The problems that we

described earlier and the behavior of the algorithms will

be similar among all graph-cut techniques. They vary in

the energy function that they minimize and in how they

achieve interactive speeds. The problems of these

algorithms lie in their doing different things than the user

intends.

We used six images from the Berkeley segmentation data

set [2] with each of 9 subjects. The subjects were all

university students with no more than casual experience

in segmenting images. Each subject received the images

in the same order. For a given subject/image the

algorithms were presented in random order. Because we

had no mechanism for evaluating selection accuracy over

time we give the users a specific amount of time and

instructed them to achieve as much accuracy as possible

within that time. We then compared the user’s results to

the average Berkeley annotation. Figure 22 shows the

average edge agreement of each technique at accuracy

distances of 3 through 6 pixels. The various

segmentations provided in the Berkeley data did not

themselves agree at accuracy less than 3 pixel which

would make more accurate comparisons spurious. Our

brush technique shows a good match to the gold standard.

All of these differences are statistically significant

(p<0.01). When asked, eight of the users preferred the

brush to the other two techniques. One subject thought the

automatic snapping to the image was more fun. Our

conclusion is that the brush technique is as accurate or

better than others but that its key contribution is the

interactive control that supports.

D Brush Lasso diff Snap diff

3 98% 95% 3% 93% 5%

4 99% 96% 3% 96% 3%

5 99% 96% 3% 97% 2%

6 99% 96% 3% 97% 2%

Figure 22 – Edge agreement in neighborhoods 0-6 pixels

REFERENCES
1. Bai, X., and Sapiro, G. “A Geodesic Framework for

Fast Interactive Image and Video Segmentation and

Matting,” IEEE International Conference on

Computer Vision, ICCV 2007, (2007), pp. 1-8.

2. Berkeley Segmentation Dataset and Benchmark

2007. http://www.eecs.berkeley.edu/Research/

Projects/CS/vision/grouping/segbench/

3. Boykov, Y., and Jolly, M.P. “Interactive Graph Cuts

for Optimal Boundary & Region Segmentation of

Objects in N-d Images,” In Proceedings of ICCV

2001, (2001).

4. Chen, J., Paris, S., Durand, F., “Real-Time Edge-

Aware Image Processing with the Bilateral Grid,”

ACM Trans. on Graphics, 26, 3 (July 2007).

5. Kass, M., Witkin, A., and Terzopoulos, D., “Snakes:

Active Contour Models,” in Proceedings of the First

International Conference on Computer Vision,

(1987) London, England, pp. 259-68.

6. Li, Y., Sun, J., Tang, C. K., Shum, H. Y. Lazy

Snapping. In Proceedings of the International

Conference on Computer Graphics and Interactive

Techniques, (2004) ACM, pp. 303-308.

7. Mortensen, E. N. and Barrett, W. A. Intelligent

scissors for image composition. In Proceedings of the

22nd Annual Conference on Computer Graphics and

interactive Techniques S. G. Mair and R. Cook, Eds.

SIGGRAPH '95. (1995) ACM Press, New York, NY,

191-198.

8. Mortensen, E. N., Reese, L. J. and Barrett, W. A.

“Intelligent Selection Tools,” Computer Vision and

Pattern Recognition (CVPR 2000), IEEE, pp776-777

vol 2.

9. Porter, T. and Duff, T. “Compositing Digital

Images,” Computer Graphics 18(3), (July 1984).

10. Rother, C., Kolmogorov, V. and Blake, A. GrabCut:

Interactive Foreground Extraction Using Iterated

Graph Cuts,” In Proceedings of the International

Conference on Computer Graphics and Interactive

Techniques, (2004) ACM, 309-314.

11. Wang, J., Agrawala, M, and Cohen, M. F. “Soft

Scissors: an Interactive Tool for Realtime High

Quality Matting,” SIGGRAPH ’07, (2007).

12. Williams, D. J. and Shah, M. “A Fast Algorithm for

Active Contours and Curvature Estimation,” CVGIP:

Image Understanding, 55,1(1992) , pp. 14-26.

