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ABSTRACT
The XWeb project addresses the problem of interacting
with services by means of a variety of interactive
platforms. Interactive clients are provided on a variety of
hardware/software platforms that can access and XWeb
service. Creators of services need not be concerned with
interactive techniques or devices. The cross platform
problems of a network model of interaction, adaptation to
screen size and supporting both speech and visual
interfaces in the same model are addressed.
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INTRODUCTION
Exponential growth in computing capacity and size of the
Internet, as well as exponential decline in costs for a given
fixed capacity impose interactive challenges that traditional
user interface architectures cannot meet. The exponential
growth in capacity produces ever larger repositories of
information with ever more diverse content. The
exponential decline in cost pushes computation into ever-
smaller packages into increasingly many parts of human
activity. The prospect of cheap connectivity to virtually
everything holds enormous potential for interactive
systems.

The service problem

Information and control services will be increasingly
diverse ranging from petabyte-sized databases down to
microcontrollers in small appliances. This diversity poses
two sets of problems. To justify the very large database, it
must service a large and diverse user population. Training
and supporting software installations for a diverse
population is an almost insurmountable task. This problem
is exacerbated by the variety of interactive platforms, such
as lap tops, cell phones, personal digital assistants,
interactive  walls and rooms with new platforms yet to be
invented.

The converse of the large server problem is the microserver
problem. With the advent of significant computation and
memory in packages costing less than $50 to $100 the cost

gap between control and information services and their
user interfaces becomes quite large. A primary reason for
the difficulty in programming VCRs is that the hardware
cost of a truly effective user interface would almost double
the cost and size of the VCR.

In addition to VCRs there are a variety of other uses for
such microservers. Vending machines must be filled by
people. If these machines can provide people with remote
access to their current state, many visits can be avoided and
costs reduced. Instruments in remote locations can be
serviced. Large appliances and other devices can be
instrumented for diagnostic information that can be
remotely accessed. If, however, the user interface must be
directly coupled to each such device, both the hardware
and training costs will jump significantly.

Pervasive computation cannot succeed if every
computational device must be accompanied by its own
interactive hardware and software. Diverse populations
cannot be served by an architecture that requires a uniquely
programmed solution for every combination of service and
interactive platform. What is needed is a universal
interactive service protocol to which any compliant
interactive client can connect and access any service.
Decoupling the user interface from the service is the only
possible approach.

The user problem

Users are faced with a similar problem to that encountered
by the service providers. There is a huge diversity in the set
of possible control and information services that a
particular user may find useful. Installing a unique piece of
software for each desired service is not a good solution. It
is already true that for most personal computer users,
software occupies more space than any other class of
storage. If every new service requires the installation of a
new piece of software, the accessibility of that service is
sharply diminished. Users have already discovered that
new software installation is the most likely reason for
failure of their computers.

Installing unique user interfaces for each service also poses
a serious learning barrier. The average user cannot master
more than a few different user interfaces. If every new
information service, appliance, entertainment device, or
piece of automation poses a new interface to be learned,
the result is an unusable morass. The usability problem no
longer lies in the design of a particular interface, but rather
in the collective mass of such interfaces. A huge barrier to
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pervasive computing is that users are drowning in the
diversity.

In addition to the diversity of services that a user may want
to access there is also the diversity of situations in which
they may want to interact. Consider our example of
vending machine servicing. The dispatcher/manager in the
home office will have a different set of interactive devices
available than the service person in a truck traveling to the
next stop. These will be different still from the set of
appropriate user interface devices for actually servicing the
machine. Each situation imposes its own physical
requirements on the set of devices and set of interactive
techniques that are possible and effective. It is not
reasonable to require each vending machine to support all
such possibilities. Neither is it reasonable to force the users
in each situation to work with inappropriate user interfaces.
A more general solution is required.

An additional diversity of interactive behavior arises when
considering people with various disabilities. It is not cost
effective for each service to build a unique user interface
for each unique set of disabilities. Nor is it likely that such
users will be able to learn and/or adapt to a large diversity
of interfaces. Again the unique user interface for each
service approach fails.

What an individual user needs is a small number of
hardware platforms, each with its own user interface that
has been tuned to the capabilities of that platform and the
class of users/situations for which it is intended. Each such
hardware/software platform must be capable of interacting
effectively with any service. An architecture where
interactive clients are independent from control and
information services, can scale to the level of diversity
brought about by Moore's Law and the Internet.

Learning from the WWW

The World Wide Web meets most of the issues described
above. HTTP/HTML provide a uniform protocol that
separates services from their user interfaces. Users need
only one piece of browser software for each interactive
platform that they use. HTML browsers have been
developed for personal digital assistants, cell phones and
other devices in addition to the original desktop versions.
This one piece of software accesses a huge variety of
services.

Corporate information providers are rapidly converting to
web-based user interfaces because they are freed from the
installation and training problems imposed by the
application-based UI architecture. Devices ranging from
digital cameras to network caching appliances provide an
HTTP server as their only user interface. The actual user
interface to such devices is found in any standard web
browser. This approach is an obvious success story.

However, HTML and HTTP are interactively
impoverished. The level of user interface that they provide
is equivalent to the old IBM 3270 terminals that were in
use two decades ago. The architecture of the WWW is
right but the interactivity is insufficient. New initiatives
such as WebDAV and WAP address document versioning
and cell phone interaction as incremental modifications of
HTML/HTTP. Neither takes on the full range of interactive
modalities.

XWeb

This paper describes the interactive solutions to these
problems that have been developed as part of the XWeb
project. XWeb is based on the architecture of the WWW
with additional mechanisms for interaction and
collaboration.  XWeb servers provide responses to the XTP
network interaction protocol. Server implementations are
completely independent of the interactive platforms that
users might use.  So far we have demonstrated servers
which provide interactive access to directory trees of XML
documents, relational databases and home automation
devices.

Users work in the XWeb world via interactive clients that
are tuned to the interactive capacities of particular
interactive platforms. So far we have developed clients for
the desk top, for speech only situations, and for pen-based
wall displays. We are currently working on clients using
only minimal button sets as well as multidisplay interactive
rooms. Our strategy is to choose client situations that pose
the greatest possible diversity of interaction.

The key to the scalability of the XWeb user interface
architecture is that services and clients can independently
choose a variety of implementation strategies that are tuned
to their particular needs. The vending machine status server
can be extremely small in terms of memory and software
complexity. Huge information repositories can be very
complex with replication architectures and specialized
search functions. All such implementations are
independent of each other and of the particular mode of
interaction that any user might chose, provided that they
conform to the XWeb Transport Protocol (XTP).  Similar
advantages accrue to users in that they can pick a particular
client that is suited to their needs, learn only that client, and
yet interact with all possible XWeb services.

Successful development of the XWeb interactive
architecture depends on solutions to the following
problems.

•  Defining an interactive protocol for communication
between service and client

•  Defining user interfaces in a form that is independent
of a particular mode of interaction

•  Adapting interaction to available input devices ranging
from minimal button sets to interactive rooms
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•  Adapting to variation in screen size and aspect ratio
•  Defining interfaces that can be based on speech and

audio as well as visual display.

XTP INTERACTION PROTOCOL
The World Wide Web defines the HTTP protocol as the
basis for communication between clients and servers. At
the heart of this protocol is the GET message that will
retrieve data from any HTTP server. Our XTP (XWeb
Transport Protocol) uses that same GET method. However,
XWeb goes beyond the publish-mostly architecture of the
WWW. XWeb is intended to provide full interactivity.

In our earlier work on user interface software architectures
we have found that the vast majority of all interactive
behavior is to find, browse, and modify information[9,10].
A server is viewed as a tree of data to be searched,
retrieved, and modified. We chose trees because of their
ability to encode a very general set of data structures. We
also chose trees because of the simplicity of generating
names for objects in the tree. In this regard we have
retained the URL ideas from the WWW. We have avoided
graphs or directed acyclic graphs because of naming
problems. However, our interfaces do support links from
object to object, which essentially provides users with any
graph representation of information.

We represent all XWeb data as XML. XML is a quite
general mechanism for representing virtually any tree-
structured data. Note that XML is the transport
representation for data, not necessarily the internal
representation. We have implemented servers based on file
directory structures, XML files, relational databases and
Novell directory services.  In the WWW, HTML is used as
a facade for a variety of information storage formats. We
have done the same, except that we have discarded the
notion that all information is a formatted document.

Retrieving information

To XTP the server's data looks like a tree of objects each of
which has a tag type, named attributes (with string values)
and zero or more child objects. Child objects can be
referenced by ID or by index. A URL for XWeb has the
form

xweb://domainname:port/pathname

much like an HTTP URL. As in HTTP the port is optional.
Path names consist of the indices or identifiers of the child
objects starting from the root of the site. Negative indices
count backwards from the last child. So the last child of
some object is at index -1. Attributes are referenced by a
special @attname syntax. Thus using, path names it is
possible to identify any object on the site.

When referencing an object is it important to differentiate
between just that object or the entire tree rooted at that
object. This is a particular problem when an entire

directory of objects is referenced. If the whole object is
desired, an entire site may be downloaded, which is rarely
appropriate. On the other hand, it is frequently useful to
retrieve entire subtrees at once so as to interact with the
tree as a whole. We differentiate between references to an
entire tree and a simple skeleton description of that tree. If
the URL ends in "/" then only the skeleton is requested. For
implementation reasons, many types of XWeb services
refuse to return anything more than the skeleton
(summaries of child objects) rather than the entire subtree.
Subobjects are then retrieved individually as needed.
Example URLs might be

•  xweb://my.site/games/chess/3/@winner
the winner attribute of the fourth (starts at 0)
chess game

•  xweb://automate.home /lights/livingroom/
a skeleton description of the set of lights in
the living room

•  xweb://automate.home/lights/familyroom/-1
all the current information about the last set of
lights in the family room

Modifying information

All interaction with an XWeb site is defined in terms of
changes to that site's data tree. A CHANGE message
consists of a URL for the site and subtree to which the
change is to be applied. A CHANGE consists of a
sequence of editing operations. Each operation contains
one or more references to objects or attributes to be
modified. Such references are relative to the root of the
CHANGE subtree. The editing operations are:

•  set an attribute's value
•  delete an attribute
•  change some child object to a new value
•  insert a new child object
•  move a subtree to another location
•  copy a subtree to another location

This set of editing operations defines all of the ways in
which a client may interact with an XWeb service.  By
composing these operations, any manipulation of a tree can
be expressed.  Note that these manipulations are far more
extensive than those supported by HTML or WML.

By focusing the client/server interaction on data
manipulation rather than event propagation, we achieve a
level of independence between client and service that is not
possible otherwise. The X windows system provided for
distributed user interfaces by propagating input events and
drawing commands across the network. This, however,
bound the interface to the originally concieved style and
set of input devices. Adapting such interfaces to a different
modality such as speech and audio [8] is quite
cumbersome. Remote interaction in terms of events is also
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quite sensitive to network latency. It is unacceptable if each
input event must make a complete round trip to the
application before the user gets any feedback. Using
replicated data, the user can proceed with most interactions
without confirmation from the service. This provides for
rapid local feedback and interaction across the network.

PLATFORM INDEPENDENT INTERFACES
A key problem is for the creator of an information service
to define interfaces that will be effective on a variety of
interactive platforms. Our approach to this is to define
XViews that are general XML descriptions of an
interaction, which do not specify the interactive techniques
to be used. The primary purposes of an XView are to

•  select the data elements that are to be included in the
user interface,

•  map those data elements to specific interactors and
ranges of possible values,

•  provide resources for interactors to use in
implementing their user interfaces.

When an XWeb client initiates an interaction, it uses a two
part URL.

DataURL::ViewURL
The DataURL is a reference to some subtree of some
XWeb site. The ViewURL is a reference to an XView
specification that defines the interaction with the data. Any
missing portions of the ViewURL are supplied from the
fully specified DataURL. This simple referencing
mechanism allows for multiple views of data items as well
as the application of a view specification to numerous data
items. We plan to further abbreviate this specification to
allow servers to inform clients about appropriate default
ViewURLs for a particular data item. This would allow
clients to specify only the DataURL.

Interactors

The heart of the XView specification is the interactors or
widgets. Note that our use of interactor should not be
confused with the terminology introduced by Brad
Myers[7]. The purpose of an interactor is to specify the
possible types of values that a data item can have. It is also
the purpose of an interactor to transform an internally
encoded data value into an external representation that is
appropriate for users. Interactor specifications do not
dictate input events, interactive techniques, or layouts. An
interactor description encodes what the desired information
is, leaving specific mechanisms of how the users perceive
and specify new values up to the various client
implementations. This is key to our goal of platform
independence.

Interactors fall into two categories, atomic and aggregate.
The set of interactors that we have provided is similar to
the widget set that one might expect in a user interface tool
kit except that we have specified them at a higher semantic
level.

Atomic interactors

Most tool kits define their basic set of atomic widgets
around specific, generally useful interactive techniques.
The criteria for choices are to provide flexible composition
of widgets to meet most needs. Our design is focused on
frequently used semantic concepts. The implementation is
not radically different, but it makes significant differences
in terms of separating the user interface from the service
and preserving platform independence.  Our currently
implemented set of atomic interactors are

•  Numbers with multilevel units and unit conversions
•  Dates
•  Times
•  Enumeration of finite choices
•  Text (single or multiline)
•  Links to other data and/or views

A normal user interface tool kit would provide check
boxes, radio buttons, combo boxes, labels, buttons and
scroll bars. However, each of these implies an interactive
technique, which limits the choices for interactive client
implementations. The semantic goal of choosing from a
finite set is the same whether radio buttons, combo boxes,
menus, function keys or speech are used. We define the
enumeration interactor and leave the specific
implementation to the client. The choice of interactive
technique depends very much on the interactive devices
available and the available presentation resources. We do
not provide buttons because they do not model any change
to a piece of information. Many clients use buttons but as a
means rather than a semantic goal.

We specifically identified dates and times as special
interactors because these semantic values occur with a high
frequency among applications.  By specifying how a date
or time is encoded in the data, we leave the client to
develop an effective set of interactive techniques to
manipulate that information. By stepping up to a higher
semantic level, we provide specific client implementations
with more interactive flexibility.

Our number specification is quite sophisticated in that it
provides an abstraction for hierarchical units as well as
conversions among systems of units.  For example, lengths
can be specified in feet and inches as well as meters and
centimeters. Only linear unit conversions are supported.
Units of almost any type can be supported. By supporting
units we have semantically packaged a concept that would
require several widgets in most implementations. By
retaining the semantic whole, we increase the flexibility of
interactive choices for various client implementations.

We do not provide labels in our interactor set. Each
interactor carries with it its own descriptive information.
Our approach is that each interactor can have a variety of
information resources associated with it. The client
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implementation can then choose which of them to
download and how they should be presented. Minimally
each interactor must have a name. Beyond simple names,
icons (of various sizes), abbreviations, synonyms, and
recorded sounds can be added. Client implementations
choose from among these resources when presenting the
interactor to the user. Many use label widgets for the
names. Speech clients, for example do not. The choice is in
the implementation. Explanation and help texts can also be
added to any interactor for presentation to the user. We do
not use any resource inheritance mechanism such as in X
Windows or Cascading Style Sheets [13]. Specifying an
interactor description and then applying it to many data
objects fills the need without the complexities of
inheritance.

By only requiring a name with all other resources being
optional, a minimal client capability is established. We see
future interactive clients with very limited capacities. If,
however, such clients can manage a network connection
and express the basic interactor values they can provide
full interactive functionality. We see this as important to
the development of small wearable client devices that are
unobtrusive but fully capable. An example might be an
infrared client with a minimal button set that is built into a
wristwatch. In our worldview of interaction, the ability to
scale down is as important as scaling up.

Aggregate interactors

At present we have implemented two aggregation
interactors, which can assemble smaller pieces into a larger
whole. These are groups and lists. A group is simply a
finite collection of interactors, which together have some
logical meaning. A group has descriptive resources and a
set of child interactors. There is very limited layout
information associated with a group other than that the
group should be logically presented together. The
geometric layout issues are addressed later in this paper.  A
hierarchy of groups forms the fundamental structuring
mechanism for an XView.  This structure is key to
managing interactions where there is limited presentation
capacity such as small screens or audio-only interfaces.

A group also carries with it a summary descriptor. This is a
pattern, which is used to assemble a brief textual
description of the data contents of the group. In audio and
small screen situations, this brief summary is invaluable in
conserving presentation resources. The assembly of
summaries is discussed later in the section on tree
mapping.

Ordered multi-column lists are our primary mechanism for
handling arbitrarily large sets of data. Our implementation
provides for client-side sorting on any of the columns.
Most of our list views present summary information in a
few columns with a link interactor that leads to a full view
of the selected object.

Future interactors

There are various ways in which XWeb's current interactor
set falls short. There are no interactors that can manipulate
images or sound. These media data types are important and
must be included.  It is very important that an interactor be
provided for selection from a finite, but arbitrarily large set
of choices. An example would be selecting a name from a
phone book. There are many interactive techniques that
have been developed which rely on such enumerated sets
to provide focus to fuzzy or ambiguous inputs. Among
them are speech recognition, text entry via phone pads[5],
handwriting recognition, and pen-based typing [6]. XWeb
needs such an interactor.

The group and the list are an insufficient set of aggregate
interactors. The list cannot handle very, very large data
sets. An interactor that can handle sparse traversals of large
data is required. We also feel that an interactor that can
manage spatial relationships found in diagrams,
schematics, and maps is required.

In this first cut at the XWeb architecture we have focused
on the underlying substrate and the relationships between
clients on various platforms and various servers. Having
laid down the fundamental architecture and explored the
issues of cross-platform interaction, there is now greater
justification for more general high level interactors. Such
abstractions are not justified in the traditional architecture,
where the user interface is tightly bound to the information,
because the effort to use the abstraction can become as
complicated as programming the solution by hand.
However, when only a very few interactors can be
programmed into each and every client these higher level
abstractions become much more important.

Tree remapping

Defining an XView is fundamentally a process of mapping
fragments of the data tree onto the tree of interactors that
constitutes the user interface. Essentially the process must
integrate content (the data) with interactive presentation.
This is very similar to the goals of the eXtensible
Stylesheet Language (XSL) [14]. XSL is focused on
transforming data into a suitable presentation. This causes
several problems. The first is that XSL is far more general
purpose in terms of mapping arbitrary XML trees into
other arbitrary trees. The second problem is that XSL
mappings are many to one. In an interactive setting we
need one to one mappings. Not only must the data be
presented, but also when the user changes the presentation,
that change must be transformed back into a change on the
original data. In the case of a many to one mapping the
reverse transformation is undetermined. In addition, it is
hard for designers to predict the reverse behavior of a
series of pattern matching rules. Our final constraint is that
the mapping algorithm must be small so as not to impose
code size problems on small interactive platforms.
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A second approach to defining the relationship between
interactors and their data is to provide a programmatic
connection such as JavaScript. Our problem with this
solution is that designers must explicitly implement both
directions of the transformation. This is further
complicated by the fact that interaction is based on change
record generation. Our last problem with explicit client-
side programming of the interface is that it leads to
platform specific interfaces. A declarative relationship
between interactor and data provides more latitude for
implementation by interactive clients.

Figure 1 - Sample Interactors

Example

Assume that the following XML fragment represents the
data for a home automation system that controls sprinklers.

<sprinklers startTime="00:00">
<days ID="days" sun="0" mon="1" tue="1"

wed="0" thu="0" fri="0" sat="1"/>
<zone time="30"/> <zone time="40"/>
<zone time="15"/> <zone time="11"/>
<zone time="22"/> <zone time="55"/>

</sprinklers>

What is desired is a user interface like that in figure 1.

Specifying the view

The view starts with a root interactor that is almost always
a group interactor. The groups form a hierarchy of
interactors. As each interactor is instantiated there is a
binding created between that interaction description and a
corresponding data object. Every interactor has a loc
attribute, which specifies a path from its parent's data
object to its own data object. The loc may be empty, which
indicates that the interactor references the same object as
its parent, or it may be arbitrarily long, reaching deep into
the data object hierarchy to reference a specific object.

The skeleton view for this interaction is shown in the
following XML

<xview rootID="timer">
<group ID="timer" loc="" >

<time loc="" . . .> <name text="Start Time"/>
. . . . . .

</time>
<group loc=""> <name text="Zone durations"/>

<number loc="0/@time". . .> . . . . </number>
<number loc="1/@time". . .> . . . . </number>
. . . . . .

</group>
<group loc="days"> <name text="Days"/>

<enum loc="@mon">
<name text="Monday"/> . . . .

</enum>
<enum loc="@tue">

<name text="Tuesday"/> . . . .
</enum>
. . . . . .

</group>
</group>

</xview>

The root view is the group with the ID of timer. This is
mapped to the root object of our data, which is the object
that encloses the <sprinklers> data object. This group
contains a time and two other groups. Since the start time is
found as an attribute of the <sprinkler> object, its loc is
empty. Since all of the information for the Days group is
found in the object whose ID="days", its loc is "days".
Note that the second <number> in the Zone durations
group has a loc of "1/@time", which indexes the
<sprinkler>'s children (zero relative) and selects the time
attribute as the container for this number. This recursive
selection via path names is very easy to implement and
easily supports the required two-way mapping between
user and data.

Data extraction composition patterns

Some of the interactors have composite data values. For
example a <time> consists of hours, minutes, seconds and
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AM/PM. A <date> has the year, month, day of the month,
and day of the week. This information can appear in
several formats and can be encoded in the data in various
ways. There are also multiple ways in which the
information can be presented to a user.  In addition, there
are the group summaries that are composed of data
fragments from data being edited. We handle all of these
mappings by means of a simple text matching and
composition algorithm.

All atomic data values in the data tree are text strings. A
data value such as a date may be represented in several
such strings (separate for day, month and year), or encoded
into one string. The information presented to the user for
manipulation is generally in one string. An
extraction/composition pattern is a string with variable
name references embedded in it. For example the pattern to
extract the start time from the <sprinklers> is

"$(hour_24):$(minutes)"

All characters up to the colon are placed in the variable
hour_24 and the ones after the colon are extracted into the
variable minutes. On many interactors the variables are just
named placeholders. In date and time there is a fixed set
each with a special meaning. The userFormat attribute on
the <time> specifies how the time is to be presented to the
user.  In this case the format is:

"$(hour_12):$(minutes) $(AMPM)"

In transforming information from the data to the user
interface the process is to match the pattern against the
data, filling variables as the extraction match proceedings.
Then any variable calculations are done. In the case of
<time>, the hour_12 (twelve hour clock) and AMPM
values must be computed from the hour_24 variable. Once
all variables are computed then the user data is composed
using the user pattern. When the user edits the time, the
reverse process is done. In the case of <time>, <date> and
<group> summaries, the data can be in many places. The
descriptor specifies all the places which can be sources for
the data. Before variables are computed, all part strings are
matched, to extract variable values from all of the places
where they might be stored. The algorithm is simple, but
provides for quite general encodings and two way
mappings of data.

Obviously the tree and data transformation capabilities of
an XView are not sufficient for the most general
transformations. We delegate such transformations to the
server implementation. The data tree that a server presents
is only a faÁade over the real service. The server
implementation can program any encoding or
transformation it desires. The purpose of the XView
transformations is to support multiple views of the data for

various purposes. Real computation is reserved for the
server implementations.

ADAPTING TO AVAILABLE INPUT DEVICES
The primary mechanisms for adaptation of interfaces to
multiple interactive devices are 1) the general semantic
nature of the interactors, 2) multiple client
implementations, and 3) a variety of descriptive resources
attached to interactor descriptions. The interactors are
purposely designed to capture the nature of a specific data
type rather than an interactive technique for manipulating
that type. In our <sprinklers>, on and off for a particular
day are represented as 1 and 0.  Any interactive technique
that chooses between 1 and 0 is acceptable. It can be two
radio buttons, a check box, a checked menu item, two
different buttons on a pager or two different spoken words.
It is up to the client implementation to choose a technique
based on its own interactive capabilities. The interactor
only encodes the range of possible values.

Our vision for XWeb is that every interactive platform will
have its own XWeb client implementation.  Each client
will have its own interactive techniques. We believe (as has
occurred with the WWW) that once a user learns the
behavior of a particular client, that knowledge will transfer
to all XWeb applications accessed through that client. We
think this will have particular value for speech interfaces
that do not have the advantage of having most information
displayed simultaneously and no displayed prompt
information. We believe that developing skill with the
client will greatly facilitate learning the spoken interface
for new applications. This learning transfer should also be
valuable for minimal button clients. Investing learning time
in a minimal client that is highly mobile but somewhat
awkward is more beneficial if that learning can be
transferred to many applications.

To push our understanding of cross-modal interaction we
have focused on three specific client implementations.
These are a standard desktop client, a pen-based wall
display client, and a speech-only client. We have
implemented the full interactor set on each of these clients.
For the desktop client we made the obvious choices for
interactor implementations drawn from the Swing toolkit.
For the pen-based display we are faced with the lack of a
keyboard. All interactors that could use text input were
provided with pen input using Graffitti. In addition, since
many of our interactors manipulate ordered values, we
provided flicking gestures to increment or decrement
digits, days of the week, months etc. Such flicking of any
value allows for quite rapid modification of these values
using easily learned gestures. Once the flicking technique
is learned it works on any application. The speech client
was somewhat more problematic. Its particular issues are
discussed in a later section. By leaving the interactive
techniques up to the client, effective interactions can be
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developed for each platform that all manipulate the same
semantic information using the same CHANGE messages.

To augment the capabilities of the various clients we allow
interactors to be decorated with a variety of informational
resources. Every interactor can have explanation text that
can form the basis for user help. Icons of various sizes can
be provided for screen-based clients. Abbreviations of
names can be provided for text-only clients with limited
displays. Synonyms are provided for speech clients as well
as recorded sounds for use by audio display clients. These
additional resources allow XView designers to enrich an
interface without constraining it. The clients are free to
choose which resources are of value and download only the
ones that would be helpful for that particular client.

SCREEN LAYOUT
A problem that arises when designing interfaces that must
adapt to a variety of interactive platforms is screen layout.
There are three major issues involved in this question.
They are 1) determining minimal visible size, 2) dealing
with the widely varying size of screens and 3) handling the
variation in aspect ratios. In one respect, we can ignore the
problem and let each client implementation deal with it.
The layout is primarily driven by the user interface
structure imposed by the group and list trees. Each client
can display that structure in any form that they choose.

Providing a general layout solution has three main
advantages.  The first is that the general solution can be
reused to simplify development of new interactive clients.
The second is that a general solution has advantages for
large display clients that may want to shrink displays down
to very small windows. The small window problem is
isomorphic to the small screen problem. The final
advantage is that XView designers working on large
displays can adjust window sizes to understand how their
designs will work on more limited screens.

The first problem is to determine the minimal visible sized
object. This cannot really be represented as a fixed number
of pixels because pixel size varies so radically among
displays. A fixed number of pixels is also not adequate
when dealing with displays that will be used from varying
distances. For example, wall displays can be used by
someone with a pen standing at the display or by people
sitting in chairs some distance from the display. The
minimum visible size may vary dynamically in such cases.
Our solution to this is that minimum visible size is
determined by the smallest readable font size.  Font metrics
on most graphics systems will convert a font size into a
pixel height. The pixel height can then be used internally.
Using the minimum font size most widgets immediately
can compute their own desired sizes. For icons we use the
minimum pixel height as the minimum size for icons. This
immediately eliminates icons that are too small. Use of
larger icons can be based on available screen space.

There have been a variety of layout schemes proposed for
dealing with variable sized windows. One of the earliest
was by Cardelli [2]. The Higgins system [3] proposed
alignment enhancements. Various other constraint systems
have also been used to adapt screen layouts[12]. All of
these mechanisms provide adaptability but only within a
limited range of possible layouts. Any geometry-only
solution cannot bridge the gap between a 2000x2000 wall
sized display and the small size of a PDA. The most
serious difficulty is change of aspect ratio. The geometric
relationships among objects in a portrait style display are
very different from a landscape display. Simply
transposing X and Y is also not an adequate solution
because the aspect ratios of text cannot be equivalently
transposed.

The intrinsic size layout pioneered in TEX, brought to user
interfaces by InterViews[4], and popularized by Java is the
most promising for our purposes. The intrinsic size
approach allows each interactor to report on its desires and
then provides various mechanisms for compositing
interactors to allocate space based on the desired sizes. The
normal intrinsic size algorithms suffer from 1) inability to
deal with aspect ratio variation, and 2) continuous rather
than discrete allocation of space. An additional important
issue, which the TEX algorithm will handle, is the use of
interactive focus to manage screen space.

Figure 2 - Reformatted Layout

Accommodating differing aspect ratios

The intrinsic size layout algorithm involves two passes.
The first requests from each widget, its minimum, desired
and maximum size in both X and Y. Groups then use this
information to report their own size needs. Once the total
window size and the needs of child widgets are known,
space is allocated for each child widget. This proceeds
recursively down the widget tree. The problem arises when
one considers a group such as the Days in Figure 1.  The
needs of this group are area needs, rather than specific
vertical and horizontal values. This group could be half as
tall if there were room for two columns, as in Figure 2.
This group could also be completely horizontal.
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Our approach, which works well in practice, handles the
computation of width and height independently. Each
group uses the following algorithm for layout of its
children.

Ask each child their min, preferred and max width
Based on maximum preferred width, calculate

the number of columns of children widgets
Assign each child to a column
Adjust column widths based on the preferred widths of

the widgets actually assigned to that column
Ask each child widget how tall it would like to be

(min, preferred, max) given the width of it's
assigned column

Assign row heights based on widget height requests

The key modification here is that a widget is not asked for
its height until a tentative width has been assigned. The
Days group for example would use the tentative width to
decide how many columns it should use and then report a
height based on the number of columns it has room for.

Exploiting focus to allocate screen space

The primary means for controlling screen utilization is the
maintenance of a current interactive focus (which widget is
currently selected). Any group that is selected or contains
the selected widget will report as its minimum width and
height, sufficient space to show the minimums for all of its
children. Any group that is not selected will report as its
minimum sufficient space for only its name or icon. The
interactive effect is that if space is limited, groups open and
close themselves when selected or not, as is shown in
Figure 2. Regardless of interactive focus, groups report
preferred sizes that will show all of their children.

It is frequently the case that there is enough room for more
than one group to be open at a time. The normal intrinsic
size approach is to allocate minimum space and the give
each widget a proportion of its preferred space. This is a
continuous sort of "share the wealth" strategy. Our strategy
is a discrete "all or nothing first". For each group we
maintain a list of most recently selected children. If more
than minimum space is available we give widgets all of
their preferred space working down from the most recently
selected until all of the space is gone. This produces the
interactive effect of having widgets open or closed based
on how recently they were selected.  If there is still space
remaining, we assign what there is to the next widget on
the recently selected list. This widget does what it can with
the additional space.

Another problem that can occur is that the selected child
does not receive enough screen space to satisfy its
minimum requirements. If this occurs, we increment that
widget's preferred width by the size of one minimum
column and then reallocate space using the algorithm
described earlier. This has the effect of allowing the

selected child to use more horizontal space to
accommodate its needs. We continue giving more
horizontal space to the selected object until it has all of the
available width. At that point we are forced to scroll.

If there is a lot of screen space, these strategies produce
very stable and generally pleasing layouts. If there is
minimal screen space, the layout moves and changes as the
focus changes, thus adapting to user needs.

AUDIO/VISUAL CROSSOVER
Our final challenge is to deal with both audio-based and
visually oriented interaction in the same architecture. This
is somewhat complicated by the lack of "speech widgets,"
in earlier work. Most of the software architecture work
associated with speech is focused on natural language. The
assumption of much of the speech research is that the
primary advantage of speech is that it supports natural
language. We believe that the key advantages to speech is
its ability to scale down to very small physical form factors
and to support hands-free or eyes free interaction. Natural
language systems have not yet shown the breadth of
generality needed for an XWeb client and so far are too big
to fit onto small computing platforms.

For our first XWeb speech client, we chose a structured,
widget-oriented approach rather than natural language. We
wanted to reflect the same interface structure that users will
experience on their desktops and PDAs. Learnability of
speech interfaces is a critical problem and any transfer
from other modalities should help.

Our strategy, as with other XWeb clients, is to have the
speech interface language fixed, with each XView filling in
the blanks. Thus once a user learns the client's interactive
behavior, that skill should transfer from application to
application. This fixed language approach to speech
interfaces is supported by findings in HyperSpeech [1] and
VoiceNotes [11]. The XWeb speech client has many of the
same goals as Mercator[8]. The key advantage is that
instead of reverse engineering the interface structure from
artifacts in the X Windows protocol, the interface structure
is explicitly represented in the XView descriptors.

In our clients we see three basic dialog tasks that the
spoken interface must satisfy. They are traversal of the
interactor tree, editing of values, and obtaining help. We
have defined standard interactive syntax to dealing with
each of these.

Tree traversal

As described earlier, each XView is a tree of standard
interactors. Each interactor has a set of resources that can
be used when presenting itself to the user. In the speech
client the key pieces of interactor information are its name,
any synonyms, and its data value. These can be augmented
by audio clips to overcome the vagaries of today's text to
speech systems. Incremental traversal of the tree is handled



CHI Letters vol 2, 2 200

by the four commands Enter, Exit, Next and Previous.
Enter and Exit are used to enter groups or lists. Next and
Previous are used to traverse the children of a group or list.
With these four commands a user can go anywhere in the
interactor tree. Enter when applied to a Link interactor will
follow that Link to a new view and Exit will return from
that Link.

However, one of the advantages of speech is referencing
things by name rather than laboriously scrolling. Naming
any sibling of the current focus object will immediately
move to that object. XView designers can provide
synonyms for names that are recognized as equivalent to
the name. However, the name is always what is spoken
back by the client.

Our early experience has shown that the notion of trees and
traversal of trees is the hardest concept for users to grasp
when working with the speech client. To resolve this we
are looking at a more expanded scope for names than just
sibling interactors.

Value editing

Editing in atomic interactors is always done with the Set
command followed by a spoken expression of the new
value. Each interactor type has its own syntax for
expressing values. That syntax is standard for all instances
of that type. Any syntactic form spoken by an interactor
can also be spoken by the user to specify a new value. This
facilitates learning by listening.

Lists are somewhat special in that they have additional
commands for cut, copy and paste, as well as commands
for skipping forward or backward in larger steps than
single items. Again the commands are standard for all list
instances.

Help

Key to learning a new XWeb speech application are the
standard help commands. The Describe command will
speak the name and current value of whatever interactor
has the focus. In the case of groups, the summary value is
spoken. The Explain command will speak a textual
description of the purpose and syntax of the current
interactor. This information is found in the XView
resources for the interactor. "What can I say" always
speaks a list of the available commands and what they are
for. "Where am I" will speak the sequence of interactor
names from the root of the interactor tree down to the
current focus interactor. With these four commands the
user can learn the interface. In fact, the user need only
know "What can I say" to be able to learn everything else.

SUMMARY
The XWeb client/server model can adapt to a wide variety
of interactive platforms. Our prototype has specifically
shown its effectiveness on desktops, speech only and wall-
sized platforms. This architecture forms the basis for an

interactive substrate on which a wide variety of
applications can be delivered without getting bogged down
in the combinatoric explosion of all possible platforms with
all possible services.
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