
Sensor Signals for Interaction 
This is a brief tutorial on algorithms for processing sensor signals. When developing interactive 

technologies that are off of the desktop and out in the real world where people live, we need tools for 

recognizing behavior from a variety of sensors. Many of these sensors produce a sequence of numeric 

values over time. This tutorial describes a series of techniques for performing the recognition at 

interactive speeds. 

Signal processing vs. interaction 
The topics covered in this tutorial traditionally fall under signal processing. Some of the techniques 

described are drawn from signal processing. Many are modifications or downright software hacks that 

approximate some of these concepts. The goal here is that we care about interaction rather than the 

mathematics of signals. We want something simple that will indicate when some event has occurred. 

All of these techniques assume that machine learning algorithms will be involved. Therefore we will 

focus on various kinds of features that can be fed into a machine learning algorithm to perform the 

recognition. This discussion is independent of the machine learning algorithm to be used. Decision trees, 

naïve Bayes, nearest neighbor or linear classifiers are all simple algorithms that can use the features 

described here to perform the classification.  

What we are most interested in are features of the signal that can be used to distinguish the events that 

we are trying to recognize. If a feature will distinguish, we use it. Otherwise we want our machine 

learning algorithm to discard it.  

Many times with these kinds of signals we want to perform the recognition on small microcontrollers 

that are close to the sensor and then propagate the recognition (rather than the full signal) back to 

some interaction controller. These small microcontrollers allow us to place lots of cheap sensors 

throughout the environment. However, these microcontrollers have limited processing speed and 

limited memory. This severely restricts the kinds of computations that we can perform as part of the 

recognition. 

This tutorial assumes that you know how to program and you have a math background up through basic 

linear algebra. 

  



Types of signals 

 

Figure 1 

Figure 1 shows a simple signal of the type that you might receive from a sensor. In most cases there will 

be an analog pin on your microcontroller that you can read periodically. Successive readings of the pin 

form a signal like that shown above. Such signals might come from microphones, accelerometers, light 

sensors, twist, pressure or vibration sensors. There are many, many sensors that would generate a 

sequence of sampled values. 

From such a signal we might want to recognize striking an object, walking, running, talking, scratching, 

tapping, bending or a variety of other human activities. Figures 2 and 3 show two other signals that will 

be useful to our discussion. Figure 2 is a step signal. These rarely occur in actual use because the real 

world is not that clean. However, a step signal is helpful in understanding how our various filters and 

features behave. Figure 3 is the kind of signal that might be caused when an object is struck or tapped. 

This will add a little realism to our recognition discussions. 

 

Figure 2 – Step signal 



 

Figure 3 – an impact 

Implementation 

For handling signal sampling in microcontrollers see the implementation hints for sampling rate (to get 

samples of accurate time duration) and for signal memory (to use ring buffers to handle small memory 

resources). 

Obtaining features for recognition 
There are two basic approaches for obtaining a set of features from a signal: windowing and 

incremental. When we talk about a signal we generally look at is as an array S of numeric values. In 

theory the array is infinite but we generally only look at the recent history of S. 

Windowing 

We take a window between time S[t] and time S[t-w] (where w is the width of the window in time). We 

then take all of the samples in this window and generate a set of features that describes the signal in 

that window. Figure 4 shows a window that captures all of the information about our impact. The 

problem, however, is to automatically pick the correct window to get the information that we need. For 

example, figure 5 shows a window of the same size that is offset relative to the impact. This window 

does not pick up all of the signal information that will help us to correctly detect the impact. Figure 6 

shows what happens if the window that we select is too narrow. Again we miss a lot of the information 

about the impact.  



 

Figure 4 – good window 

The problem, however, is to automatically pick the correct window to get the information that we need.  

 

Figure 5 – offset window 

 

Figure 6 – narrow window 



The window placement is less of a problem if we are trying to detect an ongoing behavior such as 

talking, walking or whistling middle C. For such ongoing activities that are similar across the activity, the 

window placement is not much of an issue. For example in figure 6 the noisy region to the right of the 

impact can be detected by a window placed anywhere in that region because it is relatively similar.  

A simple technique for window placement is some kind of a threshold value. For example in figure 6, 

none of the background rises above an amplitude of 2. If we sample a value above 2 then we can start 

the window back a ways in time and then make it wide enough to cover the kinds of events that we are 

interested in. 

Incremental 

The incremental strategy is to update our feature set with each sample so that our features are always 

available. We typically keep a history of features over a short period of time. Using this we can regularly 

perform our recognition and report a class as soon as the features match. This essentially behaves as if 

we are continuously applying windows across the recent history. This eliminates the problem of finding 

the right place to start a window. We can use a history of large width initially and then let our machine 

learning algorithm determine what features actually matter and only keep a history wide enough for 

those features. 

Filters 
Historically the processing of signals was performed by special circuits called filters. Filters are designed 

to separate various frequencies of the signal. There are low-pass filters that get rid of high frequency 

information, high-pass filters that get rid of the low frequency information and band-pass filters (a 

combination of low-pass and high-pass) that select for frequencies in a certain range. We will not be 

using the special circuits, but these are easily replaced by two very simple algorithms (high-pass and 

low-pass). These filter algorithms lend themselves readily to incremental implementations.  

Low pass filters 

Low pass filters are used to get rid of high frequency noise to produce a simpler signal that is easier to 

work with. For signal values S[i] we compute a corresponding filter value F[i]. For low pass filters the 

formula is: 

   F[i] = α S[i] + (1 – α) F[i-1] 

In essence the filter value is a blend of the current signal value and the previous filter value. This is for 

values of α between 0 and 1. For example if α=1 the filter value becomes the signal value. The smaller 

the value of α the wider the area that the signal is blended across. The filter value becomes a mixture of 

ever increasing amounts of the earlier filter values. This averaging effect of the blend eliminates high 

frequency information from the filtered signal. The lower the value of α the lower the frequencies that 

pass through the filter. 

Figure 7 shows the result of applying low-pass filters to the signal from figure 1 using various values for 

α. An α=1 is included to show the original signal. Notice that as α gets smaller the signal gets smoother. 

By α=0.1 the primary frequency is all that remains and for α=0.01 the primary low frequency is all that is 



left. All of the noise has been smoothed away. Also note that as values of α decrease, the peaks of the 

signal move forward (to the right) in time. This is because the averaging effect all comes from the left 

(earlier in time).  

 

Figure 7 – Low-pass filters 

Our other two example signals give some idea as to how these filters treat signals we are likely to care 

about. Notice in figure 8 that the smaller the value of α, the slower the filter is to respond to the signal.  



 

Figure 8 – Low-pass filter applied to square function 

 

Figure 9 – Low-pass filter applied to an impact signal 

In figure 9 the filters are applied to our impact signal. Notice that with an α=0.2 the noise has been 

eliminated from the signal and there is a clear peak and valley. The secondary peak has also been 

eliminated. This filtered version of the signal would give us two very clear features to detect when this 

impact has occurred. Filtering out the high frequency noise has simplified the process.  

Notice also that for α=0.01 the filtered signal is almost flat. Even lower values would give us very close to 

an average. This can be really helpful when the average is not around zero. There are features that are 



best produced by subtracting the signal from the average. Getting a nice running average is possible 

using a low-pass filter with an α value much closer to zero. 

High-pass filters 

Sometimes it is the high frequencies that we want. For example we may want people’s speech without 

the rumbling of the air conditioning. High-pass filters are calculated in a very similar fashion to low pass. 

  F[i]= α (F[i-1] + S[i] – S[i-1] ) 

The intuition here is that we are taking the difference between successive values of S to blend in with 

the filter value from the past. Figure 10 is a repeat of our signal from figure 1 for comparison. Figure 11 

shows the high-pass filter for various values of α. 

 

Figure 10 – Original signal 



 

Figure 11 – High-pass filter of the signal 

Notice in figure 11 as the values of α decrease the large up and down effect of the original signal is 

eliminated and what remains is the higher frequency signal. 

 



Figure 12 – High-pass filter of the square wave 

In figure 12, where the high-pass filter is applied to the square wave, the rising and falling edges are 

strongly accentuated. The high-pass filter shows us where strong change is occurring.  

 

Figure 13 – High-pass filter applied to the impact signal 

Notice in figure 13 that as lower values of α are used, the actual impact almost disappears. The high 

frequency noise is all that remains. 

Implementation hints 

To implement low-pass and high-pass filters, see the implementation hints on fixed point arithmetic 

(cheap microcontrollers do not like to do floating point) and on ring buffer storage of the filtered signals. 

Signal integrals 
A rich source of incremental features are signal integrals. Remember that the integral of a function is 

simply the infinite resolution sum of the values of the function. Note also that the definite integral 

between A and B is the integral at B minus the integral at A. Our signals do not have infinite precision. 

They are sampled at discrete intervals. Our integral devolves into a simple sum. There are many useful 

features that can be derived from the sum of signal values across some region. By storing the integral 

(sum) of a signal rather than the signal itself, we can get the sum of any historic period in constant time. 

If we have a signal S[i] we can compute its integral as  



 I[i] = S[i] + I[i-1] 

If I[-1]=0 then I[i] is the sum of all signal samples from 0 to i. As you can see, I[i] is trivial to compute if 

done incrementally. Suppose that we wish the sum of all signals starting at A and ending at B. This is 

computed as: 

 sumAB=I[B]-I[A-1] 

if I[B] contains the sum of all signals since the beginning of time and I[A-1] contains the sum of all signals 

since before A then sumAB will contain the desired value. Note that the time to compute sumAB is 

constant no matter how far apart A and B might be. This is really important for fast computation of 

signal features. An alternative representation would be time offset O with width W (in samples). Then 

the computation is: 

 sumOW=I[O]-I[O-W]. 

Typically we would build several features from various offsets back into time and various values of W. 

Note that all such features share the same storage of I. Unlike filters, which must have a separate ring 

buffer for each value of α, integral features share the same storage.  

There is a problem, however. We cannot continue to sum up signal values for very long before we 

overflow the number of bits available. The key to this is in the ring buffer implementation. In our ring 

buffer we fill it up until we reach the last space in the buffer. In the integral version of the ring buffer we 

restart the sum at zero when we start back at the 0 index of the buffer. Thus the number of sums never 

exceeds the number items in the buffer. 

Figure 14 shows three cases of the integral ring buffer that resets its sum each time it restarts the 

buffer. For case 1 the computation of sumOW is:  

 sumOW = I[lastIndex-O] – I[lastIndex-O-W] 

For case 2, the offset has wrapped around the end of the buffer. In this case the computation is: 

 newO = BUFFER_SIZE + (lastIndex-O) 

 sumOW=I[newO]-I[newO-W] 

Case 3 is a little more complicated. In this case the window W that we want to sum up is crossing the 

wrap around boundary. The computation is: 

 sumOW = I[lastIndex-O] + I[BUFFER_SIZE-1] – I[BUFFER_SIZE+(lastIndex-O-W) ] 

As long as O+W never exceeds the buffer size, one of these three cases will always yield the sum of all 

values across W. 



 

Figure 14 – Integral Signal Ring Buffer 

In some cases, we may not want the integral of the original signals, but rather the integral of one of the 

filters. We can also use combinations of integral features to recognize more complex situations.  

Suppose we are trying to recognize the impact signal shown in figure 15. In this case we will sum two 

regions that are W wide and then subtract them from each other. 

 sumA = I[W]-I[2W]  sumB = I[0]-I[W] 

 feature = A-B 

 

Figure 15 – Two Integral Regions to detect the Impact signal 



This feature will be very positive because it is positive in region A where the signal is high and then it 

subtracts B where the signal would sum to a negative number. This will yield a very large positive 

number on this signal. We would pick a value for W based on our observations of the signal. Or we could 

generate multiple versions of this feature with different values of W and then let the machine learning 

algorithm select the best feature choice. 

Other integrals 

We don’t always need to integrate over the signal itself. We can use other functions as the basis for our 

integral. For example we sometimes want to get the “energy” of a signal. In figure 15 if we sum most of 

the signal it will sum to zero because the signal varies between positive and negative values. That is not 

very interesting. Even our impact region sums to close to zero. Instead we can use: 

 Energy[i] = (S[i]-mean)2 + Energy[i-1] 

The “mean” term is introduced because some signals like that in 15 are not centered around zero. This 

integral accentuates strong signal values regardless of the direction from the mean.  

We might also measure the “roughness” across a region using the integral: 

 Rough[i]=(S[i]-S[i-1])2 + Rough[i-1] 

This integral sums up the squares of the differences between successive samples. Where there are lots 

of sharp changes this feature will have a high sum.  

If we integrate the signal and the square of the signal we will have enough information to compute the 

standard deviation of any region of the signal. 

Zero crossings 

Another variation of an integral is the zero crossing. We can define our zero crossing function as: 

 zeroCross( I ) = if (s[i-1]<mean && s[i]>=mean) then 1 else 0 

This function simply returns 1 when the signal crosses from below the mean to above the mean. In many 

cases this mean is 0, which is the reason for the name. Our integral then is: 

 zeroInt[ i ] = zeroCross(i) + zeroInt[i-1] 

This integral simply counts the number of zero crossings that have occurred. Using this integral we can 

determine the number of times the signal crossed zero for any range of samples. The count of the 

number of times a signal crosses zero is a simple substitute for the primary frequency of the signal.  

Implementation 

See the implementation hints for integral buffers for computing and storing these kinds of features. 

Windowing 
The approaches that we have described so far are all incremental. Another common technique is 

windowing. In this technique a set of samples (a window) is chosen and a variety of features are 



computed from that sample signal. Possible features include the number of zero crossings and the total 

energy across the window. A common feature for this treatment is the Fourier analysis. A Fourier 

transform will convert a signal into its component frequencies. The strength of the various frequencies 

are used as features. This is particularly useful where we are not trying to recognize events but classify 

what is going on in the signal. The problem with Fourier analysis is that it uses complex arithmetic and 

can frequently consume all of the processor power of a microcontroller. Most modern PCs will handle 

this calculation just fine. 

Implementation Hints 

Signals 
There are two issues when dealing with signals via a microcontroller. They are sampling rate and signal 

memory.  

Sample Rate 

The sample timing problem arises because there is so much variability in the amount of time it takes to 

sample and process a signal. What you want is an array of signal values that occur at steady, regular 

intervals. Frequently this is handled by an interrupt or special timer circuits but not all microcontrollers 

have these. One of the ways to get a cheap microcontroller is to reduce all of the frills. So we assume 

that we have the ability to read from an analog-to-digital pin on a regular basis and that we have access 

to a clock that at least has microsecond (one millionth of a second) accuracy.  

The following code uses the Arduino convention of a setup procedure that is called once when the 

processor resets and a loop procedure that is repeatedly called as often as the processor can get around 

the loop. This code computes the average of all the samples that occur within SAMPLE_TIME. Once 

SAMPLE_TIME has expired it calls the procedure handleSample. The handleSample procedure is where 

all of the code goes that does whatever is necessary with the average sample.  This would be where the 

saving, feature extraction, recognition and other processing code would go. 

This code also deals with the problem that clocks (particularly ones that count millionths of seconds), 

regularly overflow their integer storage. This code detects that and correctly accounts for it. This code is 

easily modified to read, average and sample multiple signals. 

  



 

int sampleCount; 

int sampleSum; 

unsigned int sampleStartTime; 

const int SAMPLE_TIME=1000; 

 

void setup() 

{ sampleCount=0; 

 sampleSum=0; 

 sampleStartTime=clockMicros(); 

} 

void loop() 

{ int value = analogRead(PinNumber); 

 unsigned int curTime = clockMicros(); 

 var time; 

 if (curTime>sampleStartTime) 

 { time = curTime-sampleStartTime; } 

 else 

 { // the clock has rolled over its maximum time 

  time =curTime+(CLOCK_MAX_TIME-sampleStartTime); 

 } 

  

if (time>=SAMPLE_TIME) 

 { int sample = sampleSum/sampleCount; 

  handleSample(sample); 

   sampleCount=0; 

  sampleSum=0; 

  sampleStartTime = curTime; 

 } 

 else 

 { sampleCount++; 

  sampleSum+=value; 

 } 

} 

Signal memory 

Microcontrollers generally have their own RAM on the chip, which simplifies building systems but limits 

what can be remembered for recognition. The first approach to managing limited memory is to set 

SAMPLE_TIME to be as large as possible and still see the desired signal properties. The less often you 

sample, the less memory you need to store a signal covering a given amount of time.  

In all of our implementation discussions we will address time as the number of samples preceding 

current time. S[0] is current time. If SAMPLE_TIME is 1000 then S[4] is 4 milliseconds into the past. Be 

careful here because positive sample indices move in negative time. We are looking back into history, 

not forward into the future. 



The data structure for signal memory is a simple ring buffer. This buffer has a fixed size and accepts data 

until it is full and then starts over by writing over the oldest data. As long as our features do not require 

more samples than the buffer size, the required historical signals will always be available. 

int buffer[BUFFER_SIZE]; 

int lastIndex=BUFFER_SIZE; 

void addSample(int sample) 

{ lastIndex++; 

 if (lastIndex>=BUFFER_SIZE) 

  lastIndex=0; 

 buffer[lastIndex]=sample; 

} 

int getSample(int offset) 

{ int sampleIndex = lastIndex-offset; 

 if (sampleIndex<0)  

  sampleIndex=BUFFER_SIZE+sampleIndex; 

 return buffer[sampleIndex]; 

} 

The procedure addSample will add a sample to the ring buffer. The procedure getSample will return the 

sample value at the specified sample offset into the past. 

Low-pass and high-pass filters 
These filters have two implementation issues. The first is that floating point arithmetic is generally slow 

on microcontrollers with integer numbers being much preferred. The second is that every filter for each 

value of α must have its own buffer for storing the filtered signal. If you are using lots of filters, this can 

add up.  

Fixed point arithmetic 

Microcontrollers are steadily improving but they still tend to have slow floating point. Our low and high-

pass filters require multiplication by α, which is a value between 1.0 and 0.0. We can avoid floating point 

by using fixed-point arithmetic. Fixed point arithmetic involves taking a fractional number and 

multiplying it by a factor F, where F is a positive integer and usually a power of 2. Multiply and divide by 

a power of 2 is just a shift left or shift right operation, which is very fast. Multiplying by F will move part 

of the fractional information into the integer portion of the number. For example, with α=0.001, we can 

use F=1000. Then the scaled value of α will be 1 and can use integer arithmetic.  

For our purposes we can assume a constant factor F for all of our operations. The basic operations are as 

follows: 

 Float to Fixed – fixedInt = float * F 

 Fixed to Float – float = fixedInt/(float)F 

 Adding/subtract – If both arguments are encoded with the same F then integer add and subtract 

are all that is necessary. 

 Multiply – If A and B both use the same F then the product is (A*B)/F.  



Therefore, all we need to do is select an appropriate value for F and then work in integer space rather 

than floating point. The simplest choice is F=1/α. This makes the step of multiplying by α into an integer 

multiply by 1.  

Low-pass filter storage 

Note that we will need a separate buffer for each value of α. In many cases the current value of the filter 

is all we need. Because the low-pass filter has eliminated many of the high-frequency components we 

can generally use a lower sampling rate (longer sampling time) to store the filtered result. This can result 

in smaller storage. The stored filter is a simple modification of the ring buffer technique for signals. 

Samples are converted to fixed point and then the low-pass filter computation applied. If F is a power of 

2 then many multiplies and divisions by F can be replaced by shift operations. 

int buffer[BUFFER_SIZE]; 

int lastIndex=BUFFER_SIZE; 

int fixedAlpha = alpha * F; 

int fixedAlphaMinus = (1*F)-fixedAlpha 

void addSample(int sample) 

{ int fixedLast = buffer[lastIndex]; 

lastIndex++; 

 if (lastIndex>=BUFFER_SIZE) 

  lastIndex=0; 

 int fixedSample = sample * F; 

 buffer[lastIndex]=(fixedAlpha * fixedSample)/F +  

(fixedAlphaMinus*fixedLast)/F; 

} 

int getSample(int offset) 

{ int sampleIndex = lastIndex-offset; 

 if (sampleIndex<0)  

  sampleIndex=BUFFER_SIZE+sampleIndex; 

 return buffer[sampleIndex]/F; 

} 

  



High-pass filter storage 

High-pass filters also require a separate buffer for each filter with a different value of α. However, 

because only the high frequencies are retained, generally a shorter buffer with much less history is 

adequate. This is because the wavelengths of higher frequencies are shorter. The code is as follows. 

int buffer[BUFFER_SIZE]; 

int lastIndex=BUFFER_SIZE; 

int lastSample=0; 

int fixedAlpha = alpha * F; 

void addSample(int sample) 

{ int fixedLast = buffer[lastIndex]; 

lastIndex++; 

 if (lastIndex>=BUFFER_SIZE) 

  lastIndex=0; 

 int fixedSample = sample * F; 

 buffer[lastIndex]= 

(fixedAlpha * (fixedLast+fixedSample-lastSample))/F; 

 lastSample=fixedSample; 

} 

int getSample(int offset) 

{ int sampleIndex = lastIndex-offset; 

 if (sampleIndex<0)  

  sampleIndex=BUFFER_SIZE+sampleIndex; 

 return buffer[sampleIndex]/F; 

} 

  



Integral features 
The integral buffer is a simple modification of the ring buffer for storing signals. For the variations on the  

function being integrated, replace sample in the addSample procedure with the value that you really 

want to integrate.  

int buffer[BUFFER_SIZE]; 

int lastIndex=BUFFER_SIZE; 

void addSample(int sample) 

{ int lastInt = buffer[lastIndex]; 

lastIndex++; 

 if (lastIndex>=BUFFER_SIZE) 

 { lastIndex=0; 

  buffer[0] = sample; //restart the sum 

 } 

 else 

  buffer[lastIndex]=sample+lastInt; 

} 

int getSum(int offset, int width) 

{ int sampleIndex = lastIndex-offset; 

 if (sampleIndex<0)  

  sampleIndex=BUFFER_SIZE+sampleIndex; 

 if ((sampleIndex – width)>0) 

 { return buffer[sampleIndex]–buffer[sampleIndex-width];} 

 else 

 { int bottomSum=buffer[sampleIndex]; 

  int topWidth = lastIndex-offset-width; 

  int topSum = buffer[BUFFER_SIZE-1] –  

   buffer[BUFFER_SIZE-1+topWidth]; 

  return topSum+bottomSum; 

 } 

} 

 


