
Join and Capture: A Model for Nomadic Interaction

Dan R. Olsen Jr., S. Travis Nielsen, David Parslow
Computer Science Department, Brigham Young University, Provo, Utah, 84602, USA

{olsen, nielsent, dparslow}@cs.byu.edu

ABSTRACT
The XWeb architecture delivers interfaces to a wide variety
of interactive platforms. XWeb’s SUBSCRIBE mechanism
allows multiple interactive clients to synchronize with each
other. We define the concept of Join as the mechanism for
acquiring access to a service’s interface. Join also allows
the formation of spontaneous collaborations with other
people. We define the concept of Capture as the means for
users to assemble suites of interactive resources to apply to
a particular problem. These mechanisms allow users to
access devices that they encounter in their environment
rather than carrying all their devices with them. We
describe two prototype implementations of Join and
Capture. One uses a Java ring to carry a user’s
identification and to make connections. The other uses a set
of cameras to watch where users are and what they touch.
Lastly we present algorithms for resolving conflicts
generated when independent interactive clients manipulate
the same information.

Keywords
Multimodal interaction, nomadic, mobile, ubiquitous

INTRODUCTION

In 1993 Mark Weiser published a vision of ubiquitous
computing where computation and information would be
distributed throughout our working environment [WEIS
93]. This vision is becoming reality with smaller
computing, cheaper communications and more sensors
[BORR 00]. The goal is for users to move through their
environment, finding resources and services wherever they
are and to have those services provided in the context of
their physical environment. A part of that vision is that
small computing devices be carried by the user to supply
various pieces of interactive information.

We are interested in three aspects of this mobile or
nomadic computing problem. The first is the problem of
size vs. ease of interaction. A device that is small enough
to comfortably carry is frequently too small to comfortably
use. We believe that truly effective interaction will exploit

interactive resources encountered in the environment. For
example, when one walks into a strange conference room,
one will want to place an interactive task on the wall
display. When we walk into someone else’s office we may
want to transfer a task from our palm device onto the
workstation in that office. The goal is to exploit interactive
resources as they are encountered rather than forcing users
to carry such devices with them.

A second goal is multimodal exploitation of interactive
resources. While accessing an information service over a
cell phone, one may walk into the family room and place
the task onto the television to get a better view of the data.
Speech interfaces may be fine for entering data, but a
visual representation on the screen can greatly increase
usability. A small number of buttons sewn into a glove
could be integrated with an interface projected on the wall.
Small controlling devices can dynamically integrate with
large display services encountered in the world. The goal is
to empower opportunistic assemblies of interactive
resources to accomplish a particular task.

Lastly we are interested in obtaining interactive control of
a device by physical reference to it. For example when
walking into a strange conference room one could touch
the projector and have its control interface transferred to
the user’s palm device. The goal is if one sees it and
touches it, one can interact with it.

This vision is made possible by drastic reductions in the
cost of computing and interactive devices and by the
pervasiveness of the Internet. The world has changed from
people per device to devices per person. With this
abundance of interactive computing it is unnecessary to
convert users into computational pack animals.

To make this vision work an interactive model for
acquiring and using interactive resources is required along
with an infrastructure to tie it all together. Our interactive
model is based on the two concepts of Join and Capture
and the substrate is provided by the distributed interface
mechanisms of XWeb.

We will first review the work of others in nomadic
interaction. This will be followed by an overview of those
components of the XWeb architecture, which support
dynamically assembling interactive resources. We will then
define the Join and Capture primitives in terms of the
XWeb architecture. We will then show how we have

implemented these concepts using Java rings and cameras
to create a smooth and natural environment for
interactivity. Lastly we will discuss the key algorithms for
managing interaction with multiple users and clients.

PRIOR WORK
One of our goals is that users will be empowered to use
multiple interactive devices in consort on a particular task.
Rekimoto has shown how a PDA in conjunction with a
whiteboard can produce more effective collaborative
interactions than either device alone [REKI 98]. We agree
with these goals but have greater ambitions in supporting
more nomadic interactions that involve more diversity of
interactive devices than just a whiteboard/PDA pair. The
QuickSet project [COHE 97] integrates speech and
pointing modalities. QuickSet also pioneered a unification
model for integrating multimodal input. Our multimodal
approach is less tightly integrated than QuickSet. In our
model each interactive platform must independently
resolve user intent rather than merging inputs from a
variety of modalities. Our larger grained integration leaves
fuzzy inputs like speech and gesture to work out their
problems independently, but provides a more open model
for users to dynamically integrate modalities for a
particular problem.

Embedding interaction in the physical world has revolved
around the tagging of objects in the world so that their
identity can be translated into a behavior. Rekimoto used
color codes [REKI 95] and visual tags [REKI 00] to
identify objects in the world and to associate information
with those identities. We desire to go beyond simple
information to interaction services and interactive devices.
Our work is closer to the active objects marked by RFID
tags done at Xerox [WANT 99]. In contrast with both of
these cases we desire that a user need not carry any device
other than a ring or card for identification. All other
interactive resources can be encountered in the
environment. If the user does carry devices such as a PDA
or laptop, these can be seamlessly integrated with other
devices the user may find. We will show how such
tagging-based techniques can fit within the Join/Capture
paradigm.

In supporting nomadic computing it is important to be able
to identify where a user is located relative to resources and
services. The EasyLiving project [BRUM 00b] has focused
on geometry as the enabling substrate for such interactions
[BRUM 00a]. While EasyLiving used cameras to deduce
geometric position, AT&T has used ultrasonic beacons
[HART 99]. Each of these projects has explored computing
models that follow users wherever they go. Our work is in
a similar vein. However, in XWeb geometry is replaced by
information about identity and adjacency as a simpler
model for driving the interaction.

XWEB

The XWeb architecture draws its inspiration from the
client-server model of the WWW. The primary difference
is XWeb’s focus on interactivity rather than publication.
XWeb primarily views servers as maintaining trees of
XML structured data. In XWeb, a client may not only get
data from a server, but also change that data and monitor
the changes made by others.

XWeb terms
At the heart of XWeb are servers. These behave a lot like
HTTP servers in that they and their contents can be
accessed via URLs and they support the same HTTP GET
method for retrieving information. To the outside world, an
XWeb server appears to be a large, dynamic XML tree full
of objects with types, attributes and children objects.

Unlike the WWW, XWeb servers also support a CHANGE
method that accepts XML descriptions of changes to be
made to the server’s tree of data. The change language
supports the usual insertion, deletion and modification
operators. Any possible modification of an XWeb tree can
be encoded in the change language. This CHANGE
method is what makes XWeb interactive.

Services
Within an XWeb server there can be many services
embedded in its tree. As with the WWW, servers can be a
façade for data and services of infinite variety. So in a
home a server might be housed in the basement and
connected to the Internet. On this server might be
informational services such as email or shopping. There
might also be a thermostat service that uses X10 to control
the heating and air conditioning. Such a service might be a
simple XML object that looks like:
 <thermostat
 wakeTime=”6:30AM” wakeTemp=”74”
 sleepTime=”11:00PM” sleepTemp=”70”
 currentTime=”4:00PM”
 />
To client software accessing the server, this is simply XML
data that can be changed. However, within the service
implementation a change of currentTime will modify the
thermostat’s clock, and changing wakeTemp will modify
the temperature setting for the morning. In the Internet
world, this service resides on the processor in the
basement. In the user’s physical world this service resides
in a box on the hallway wall.

Clients
Services are accessed via clients. In WWW terms, a client
is like a browser except that it can modify and monitor data
as well as retrieve it. In the XWeb project we have built
clients for desktops, televisions, pens on a wall, speech,
laser pointers and gloves. Each client implements an

interactive behavior that is appropriate to the interactive
devices that the client has available. In the Internet world, a
client is a source of GET and CHANGE requests and is a
computer with a particular IP address. To a user in the
physical world a client is an interactive tool with a
collection of input and display devices that together can
manipulate any XWeb service. For example a PDA with its
screen and stylus, a cell phone dialed into an Internet
connected computer, a television with an embedded
processor and a special remote control, and a wall display
controlled by a laser pointer[OLSE 01] might all be clients.
The software for supporting the interaction is all embedded
in the client device, which is referenced, by a domain name
or IP address.

Views and tasks
Raw XML is not an appropriate mechanism for interaction.
The key to XWeb interfaces are views. A view is an
abstract definition of a particular interaction. Views are
encoded in XML using the XView language. The abstract
nature of XView allows interfaces to be distributed to
diverse kinds of interactive clients[OLSE 00]. An
interactive task is defined by a special two-part URL of the
form dataReference::viewReference. A client receives its
task in much the same way as a WWW browser. The user
either enters a URL or follows links to reach the task.

A view is simply another piece of XML residing on an
XWeb server. This may be the same server as the desired
service or some other server entirely. A view for our
thermostat service might contain better names than
“wakeTemp” as well as icons and synonyms to help clients
present a more effective interface. The normal thermostat
view might not expose the currentTime, leaving that to a
configuration view.

Combining a view with compatible data within a client
forms a complete XWeb interaction with a particular
XWeb service. Views are defined as a tree of interactors.
A particular interactor can be referenced by a path-name
from the root of the view. Our thermostat service may be
integrated with other services in a single home automation
view that contains the VCR control, cable TV, home
lighting, sprinkler timer, and microwave services. The
path-name specifies which part of which service within
home automation, the user is currently manipulating. The
data and view of its current task as well as the path-name
of the interactor that currently has the focus can
characterize the current state of a client.

SUBSCRIBE
One of our goals is to combine multiple clients working on
the same task. For example our work with the speech client
has shown that speech is awkward for navigation. The laser
pointer client is excellent at navigation by pointing, but
awkward in changing values. Dynamically integrating
these two on the same task provides a much better

interaction. A user might carry a speech client embedded in
a cell phone but would need to encounter a wall display
with laser pointer support and then dynamically combine
the two.

To support multi-client interaction, we introduced the
XWeb SUBSCRIBE method. When a client begins a task it
subscribes to the associated data. When an item of data is
changed, the server will forward that change to all clients
that are currently subscribed to that data. Upon receiving a
subscription change notice each client will update its
display appropriately. Thus any set of clients that are
subscribed to the same data will have synchronized copies
of that data. Since multiple clients can change data, there
are potential conflicts that must be resolved. We will
discuss those techniques later in the paper.

As an example of the use of SUBSCRIBE, consider a
home thermostat. The living room television might have an
embedded XWeb client, which could be directed to the
thermostat’s URL and thus present the thermostat on the
television. When the television client first references the
thermostat service it not only gets the data but also
subscribes to that data by means of the SUBSCRIBE
protocol method. The user may also reference the
thermostat through an intelligent wireless phone that
implements a different XWeb client based on speech
recognition. Now both the phone and the television are
subscribed to the thermostat. If the user says “Wake up
time – set to six thirty A.M.” not only will the thermostat
change but the subscribed television client will also be
notified so that the time changes on the screen. Conversely
the user might use the remote control to change the time
using the television client and then would hear “wake up
time set to six thirty A.M.” spoken through the subscribed
telephone client.

Neither the television, nor the telephone clients are aware
of each other, but they both are integrated on the same task.
The XWeb protocol and its SUBSCRIBE mechanism form
the framework that ties these interactive modalities
together. The problem that Join and Capture addresses is to
simplify bringing together the thermostat, television and
telephone without a lot of configuration effort on the part
of the user.

Sessions
Since XWeb behaves much like the WWW, interactive
tasks are linked together and the user may move around
freely. For clients to cooperate closely with each other it is
important that we be able to synchronize their navigation
as well as their data. This synchronization of tasks it not
only helpful for multi-client interaction but also for multi-
user collaboration. The ways in which people may want to
organize their collaborations are very broad. We therefore
wanted a single mechanism that could freely tailored. To
do this we introduced the notion of a session.

A session is a piece of XML data with the special tag
<XWeb:session>. A session has three parts:

• URL for the data
• URL for the view
• Path name to the current interactor

When a client’s URL references a session object, that client
joins the session. Because a session is just a data object on
an XWeb site, a client can subscribe to that object and be
notified of any changes. Whenever a user changes the
current interactor of a client (moves from “sleep time” to
“sleep temperature”), if that client has joined a session it
will change the interactor path-name for that session. The
server forwards this interactor change to all subscribed
clients who then change their current interactor in a
consistent manner. For example if the user said “sleep
temperature” to the telephone client, that client would
move to the new interactor and also change the session’s
interactor reference to be “thermostat/sleep temperature.”
Because the television client is subscribed not only to the
thermostat data but also to the user’s session, the television
would move its selected interactor to sleep temperature. If
the user then used the remote control to scroll to “wake up
time”, the subscribed telephone client would receive the
session notification and would speak the wake up time.

A similar session modification and notification occurs if a
client follows a link to another user interface. The session’s
data and view URLs are changed to the URLs of the link.
This causes all clients subscribed to that session to
similarly change the data and interface that they are using.
XWeb’s SUBSCRIBE is similar to the subscription
mechanisms for multimodal interaction used in QuickSet
[COHE 97]. We do not, however, attempt the fine grained
unification of multiple modes of interaction found in
QuickSet. We merely coordinate the data changes rather
than support multimodal disambiguation of user inputs.

Subscription to sessions keeps clients synchronized.
Because sessions are just data objects on servers, an
unlimited number of sessions with any organization,
naming, editing or management strategies being possible.
A client finds and joins a session in the same way that a
WWW browser might locate and access a web-based chat
room. Most of the session management joining and
departure strategies proposed for collaborative work are
quite simply implemented using XWeb sessions. Sessions
will form our basic mechanism for assembling various
interactive resources around a particular user’s task. In Join
and Capture we will associate each user with a session
object. The user’s session can be anywhere on the Internet
and need not be directly associated with the user’s current
physical location.

Connecting XWeb to the physical world
Most of the XWeb concepts have an Internet identity.
Services, views and sessions all have URLs. If one knows

the URL for each of these, one can GET or CHANGE them
as well as SUBSCRIBE to them. Clients are identified by
their domain name or IP address. Our first problem is that
clients, services, views and sessions are all scattered
around the Internet and we need a convenient mechanism
for users in the physical world to bring them together to
address a particular user task. A related problem is that
when a user is interacting in the physical world, entering
URLs directly into a client is not an effective experience.
This is particularly true if no keyboard is available. The
nice thing about the real world is that we can reference
things by touching, pointing, or standing near physical
objects rather than describing, selecting or searching. This
stands in sharp contrast to most Internet discovery tools
such as JINI [WALD 99], which assume that the user will
use the Internet to establish connections.

To accomplish these goals we need to make the following
connections between the physical and Internet worlds.

• Physical object that has an associated service ->
two part URL for the interface to that service

• Physical object that has an associated client ->
Domain name or IP address for that client

• A physical user -> URL for that user’s current
session

JOIN AND CAPTURE
Cut, Copy and Paste are three simple operations for
integrating the work product of a wide variety of
applications. They have become deeply ingrained in the
culture of graphical user interfaces. Similarly we propose
two commands for dynamically assembling multimodal
interactive resources: Join and Capture.

Our model makes several assumptions. The first is that all
interactive devices are connected to a shared network. This
need not be the Internet. A local network of Bluetooth
devices would be sufficient. The current task for each user
is represented by the URL for a user session that is hosted
on some XWeb server. The session may exist on the user’s
PDA that has a wireless connection or on her home server
back at the office.

When a user walks into a room there may be several XWeb
devices in the room, either clients or services, and the user
may be carrying one or more client devices. A desktop
workstation might be an interactive client. A microphone
headset or a pen-enabled whiteboard may also implement
XWeb clients. Each of these interactive clients implements
XView interfaces in a manner that is appropriate to their
own interactive modality.

Example interactive services might be lights that can be
remotely controlled, the room thermostat, or a television.
There may also be information services such as a news
feed or email access. These services may be provided

outside the room but their access must be physically
manifest in the room.

We also assume that the user can readily recognize
physical objects that are XWeb clients or services. This
might be because they have special devices or tags on them
or perhaps a standard XWeb icon that is easily recognized.
It would be very annoying if the user needed to walk
around the room waving at things to see which objects are
active.

Join
An interactive service can be characterized by its URL. An
interactive client may already have an active task, which
also can be characterized by its two-part URL. For
example, because of some prior use our television client
may already be pointed at the thermostat service’s
interface. A user can JOIN a service or the active task of a
client. The user with the telephone client might JOIN the
thermostat directly or it indirectly by joining the current
task of the television client. To execute a JOIN we must
know the URL of the user’s session and the URL of the
task being joined. The task’s URL can be inserted into the
user’s session by means of an XWeb change transaction,
which will then be propagated to all clients that are
subscribed to that session. Thus all of the user’s currently
attached clients will now be working on the interactive task
that the user has joined.

Our user might walk into a conference room where a
budget meeting is in progress, while carrying a laptop that
is already subscribed to the user’s session. By JOINing the
budget task already on the conference room’s whiteboard,
the user’s laptop is now collaborating with the rest of the
participants in the room. The budget task’s URL would be
placed into the user’s session to which the laptop was
subscribed. The subscribing laptop client would be notified
and would redirect itself to the new data and view. From
now until it is detached, the laptop client and the other
clients working on the budget task are synchronized.

Formally a Join of user U with client or service S would be

 U.session.dataURL S.dataURL
 U.session.viewURL S.viewURL

The concept of joining carries with it the ability to create
spontaneous collaborations. Whenever we encounter
someone with whom we want to share a task, we can join
their task, by referring to one of their clients or they can
join ours. The remaining technical problem is to identify
who is joining whom and when this is to be done. This will
be discussed later in the paper.

All XWeb clients have the ability to detach from a session.
When detached from a session, the client is still pointed at
the same data and view, but is no longer subscribed to the
session. This means that data changes will be propagated

but navigation through the interface will not. This allows
users to connect to the same task and then work
independently. They will see each other’s changes if they
are still looking at the same data, but their interfaces will
not automatically follow each other around.

Capture
To interact with anything, a user must have control of one
or more interactive clients. To obtain control of a client the
user must Capture the client. A capture operation causes
the client to subscribe to the user’s session. The client will
now be using the user’s session as the source for its data
URL, view URL and interactor path-name. Any changes
made by the captured client will not only change the data,
but also update all other clients subscribed to the user’s
session.

In our thermostat example the user is already working with
the television client. By picking up and identifying himself
to the telephone client he can capture the telephone for his
use. The telephone now references the user’s session and
its behavior is synchronized with the television by means
of the subscription mechanism.

A user may walk into a room and capture a client that uses
a laser pointer to control a wall display [OLSE 01]. The
user may then pick up the microphone headset and capture
its associated client. Now both clients are subscribed to the
user’s session. The user may now point at objects with the
laser pointer (changing the current interactor) and speak the
new values. The two modalities are working together on a
common problem and the user is freely switching between
modalities using the relative strengths of each. The
combination of these modalities is strictly opportunistic
based on whatever interactive clients are available to the
user.

Formally for user U to capture client C

 C.task U.Session

Implementation requirements
To implement the concepts of Join and Capture we need to
obtain the two part URL of the desired task and the identity
of the user. We also need mechanisms for converting a
user’s identity into the URL for that user’s session and the
ability to transfer URLs among devices, clients and the
user’s session. In the following sections we will describe
two implementations of these facilities.

JAVA RING
Our first implementation of Join and Capture uses a Java
ring from Dallas Semiconductor as shown in Figure 1. The
Java ring has a small Java virtual machine running in a
microcontroller encased in the ring. In our system, each

Java ring is encoded with the URL of its owner’s session
object.

Figure 1 – Java ring for user identity

Each interactive client or service object has an associated
iButton connector, which can accept the Java ring. When
approaching a client or service, the user plugs in the Java
ring. This makes a connection between the client/service
and the user’s session. The remaining question is whether
to join or capture. Interactive services such as the
thermostat can only be joined, so there is no question. All
of our interactive clients initiate a platform-appropriate
dialog for specifying join or capture. For example the
speech client would immediately ask “do you wish to join
or capture?” The user then responds with the desired
choice. Because the Java rings have more memory than a
single URL, some of our clients offer a dialog that
manages a history of URLs and the titles of their interfaces.
This provides the user with additional flexibility in
working with multiple tasks. A user can walk around a new
building and join several services. These are now
remembered in the Java ring and can be used later when
capturing interactive clients.

This implementation is not restricted to Java rings. In
essence all that is needed is to have a tagging mechanism
and a reading mechanism. For example every user could
carry a unique RFID tag [WANT 99]. Each client or
service would have a reader. Waving the tag next to the
reader establishes the necessary task/user association.
Conversely, the user could also carry a reader and have
tags attached to clients and services. Smart cards and
magnetic stripped cards can all be used in a similar fashion.
Rekimoto’s color codings [REKI 95] would work, but
there are not enough possible encodings for such a solution
to scale to large environments. Rekimoto’s NaviCam could
be converted to a portable client, which would
automatically join any service that it detected.

PEOPLE WATCHER
Walking around a room and plugging rings into sockets or
swiping cards through readers is still a somewhat
cumbersome mechanism for selecting interactive behavior
and assembling interactive resources. As an alternative we
have developed the “people watcher” which is based on a

set of cameras watching a room. In this scenario the user
captures clients by walking up to them and joins services or
clients by touching them.

Consider the scenario of Jim walking into a conference
room where Jane is sitting working on a problem using her
laptop. After a brief discussion they decide that they both
could effectively work on the problem together. Jane steps
to a projected whiteboard and the problem she was
working on appears there. Jim then touches a spot on the
projector labeled Join. The problem appears on his PDA
where he can make modifications from his seat. Using his
PDA client he detaches from the problem and searches the
Internet for more relevant information. He then steps to the
wall and his new information appears on the screen.

In the terms of our XWeb system the above scenario
consists of Jane capturing the projector’s client for her
problem by stepping up to the wall. Jim joined the problem
by touching the projector’s Join label. Later, with new
information, he captured the wall client by stepping to the
wall himself, replacing Jane.

In our XWeb implementation we model all of these
behaviors as Join and Capture of interactive services and
clients. Our only sensors in this version are cameras
mounted in the ceiling of a room. This is similar to the
Follow-me project[HART 99] that uses ultrasonic beacons
for the tracking of people and objects. The EasyLiving
project [BRUM 00b] presents a similar scenario for home
automation and uses cameras and a geometry model for
matching up behaviors with user location. In our People
Watcher we use much simpler image processing and the
more powerful XWeb cross-modal interaction protocol
along with the uniform concepts of Join and Capture.

For the above scenarios to work we need the following
capabilities:

• The identity of each user (user session)
• To know when a particular user is standing near

an interactive service or client.
• To know when a touchable spot has been touched.

There are two major tasks to be performed. The first is to
set up a room so that it can use cameras to sense the user’s
location and behavior relative to services and clients in the
room. The second is to perform the actual interaction using
the room.

Setting up a People Watcher Room
To set up a room we need to define places that users can be
standing or sitting that are associated with the various
interactive clients and services. For example, we need to
associate the place next to the whiteboard with the
whiteboard client. We need to associate the “join” spot on
the projector with the projector’s URL. Our set-up consists
of defining such “places” and “touches” for the cameras.
Places are physical locations where the identity of a user

can be recognized. Touches are physical locations where a
user may perform an action by touching the spot. There is
also a special place where users will be when they
“register” into the room.

Whiteboard client

X10
controlled
lights

Laser client projector

User
registration

Telephone

Workstation
client

Television

Figure 2 – Layout of a room

Consider the room layout shown in figure 2. There are
several clients and several services. We have multiple
cameras watching the room. We can uniquely identify
regions in the room by rectangular hotspots in the views of
two or more cameras, as shown in Figure 3. In setting up
the room, we draw hotspots on the various camera images
and associate client domain names or service URLs with
these rectangles, as shown in Figure 4. Places are identified
as either join, capture or identify a user. Touch hotspots
have an associated place (where the user will be) and an
associated service URL.

A

B

C

D

Figure 3 – Identifying a place

Figure 4 – Drawing hotspots

Each room has a registration area (an identified rectangle
in one or more cameras). When the user steps into the
registration area they must identify themselves with a Java
ring or other identification. The cameras then sample the
user’s features (we use a simple color histogram) out of the
registration area rectangles. These features are bound to the
user’s session URL discovered from the Java ring.

In defining places and touches we have avoided the
concept of a global geometry model [HART 99, BRUM
00a]. We did this partly to avoid its complexity, partly to
simplify our image processing and mostly because
geometry is unnecessary for our purpose. We don’t
actually care where the user is. We only care about what
client or service they are near. A global geometric model is
one very flexible way to answer this question, but not the
only way.

Interacting with the People Watcher
When a user steps into a place the cameras will notice the
change in the associated hotspots, sample the image
features and map those features to a particular user. If
multiple cameras vote on the same user in that place then
the join or capture operation associated with that place is
done. If two or more cameras indicate that skin color
appears in the same touch hotspot, then the associated
place is sampled for user identity and a join operation is
performed on the service associated with the touch.

Our image processing techniques are rather crude and
subject to error. However, they do demonstrate a non-
obtrusive interface to Join and Capture that allows users to
assemble interactive resources and acquiring access to
services simply by moving around a room and touching
physical objects. The room setup is highly flexible. Any
object in the room can become an identifier for a client or a
service without physically modifying the room.

MANAGING MULTI-DEVICE INTERACTION
A key problem that was glossed over in the prior
discussion is that multiple devices, possibly under the
control of multiple users are asynchronously modifying
data objects and session objects on a variety of servers.
Because of the highly dynamic nature of the environment
we propose, we cannot rely upon normal activity keeping
everything straight. We must ensure that all clients are
synchronized. We also have the problem that the
mechanism must scale to the size of the Internet. Therefore
there cannot be a global synchronization manager to which
all clients register. Our problem is somewhat simplified in
that each client is interacting with at most one server at a
time. Therefore, we can ignore the issues associated with
multi-server transactions.

XWeb uses a replicated client/server architecture. Clients
maintain copies of that portion of the server tree that they
are currently viewing. The server maintains the master
copy. The key problems are to recognize when there are
synchronization problems and to repair those problems.
Our fundamental assumption is that the server is always
right and the client interface must be updated to reflect
what has happened at the server. The server never does any
undo or repair. By holding the server changes as
permanent, a client need not consider the state of any other
client, unlike Grove [ELLI 89].

Our approach to management of change is optimistic
serialization. Greenberg and Marwood have indicated
problems both in the user interface and the implementation
of this strategy [GREE 94]. However, we consider these
interactive problems as less important than reliability and
scalability of the solution. A key implementation problem
in optimistic serialization is undo and repair of rejected
changes. Every XWeb change record has sufficient
information to undo every change. This is somewhat in
contrast with serialization by operational transforms.
Changes are serialized by the order in which they are
received by each XWeb server. There is no order
preservation or concept of transactions that involve
multiple services. The key issues to be addressed in
resolving conflicts is to determine when changes are out of
order, to reorder changes whenever it will not affect the
end result, and to undo changes that cannot be reordered.

The key to correct ordering is transaction IDs. We rejected
any model for ordering that involved the internal timings of
various clients as in [ELLI 89]. Transaction IDs are strings
generated by a server. They are ordered in lexigraphical
order and only their ordering is important to the algorithms.
Servers are free to choose whatever encoding they wish.
We consider it very important to the scalability of such
systems that restrictions on server implementations be as
few as possible.

Commutative changes
Testing for reorderability of changes is based on an
IsCommutative predicate. IsCommutative must return true
only if two changes can appear in any order without
changing the result of applying both of them. Every client
and every server must implement such a predicate, but it is
not necessary that their implementations be equivalent.
Again this is in keeping with our goal of minimizing
compatibility requirements. This predicate need not exactly
test the commutativity of two changes. Commutativity can
be quite a complex issue. However, as long as
IsCommutative only returns true when two changes are
reorderable, the conflict resolution algorithm will perform
correctly. The simplest implementation of IsCommutative
is a constant false, which will always produce a consistent
state across all clients but will cancel more changes than
necessary. Our current implementation of IsCommutative
returns true for changes that can be easily guaranteed not to
modify the same pieces of data.

Server conflict resolution algorithm
The server will receive two kinds of events from clients.
They are CHANGE requests and confirmations by clients
that they have received change notifications. An XWeb
server keeps a list of all clients that are subscribed and the
transaction ID of the last change that each client has
confirmed. The value LUN (Least Unconfirmed
Notification) is the smallest ID from all clients. The server
also remembers all changes whose IDs are later than LUN.
These changes are used to determine whether a new change
received from a client conflicts with already committed
changes that the client did not know about.

When a server receives a change transaction from a client it
checks to make sure that it can be reordered with all
transactions that are later than the last one the client has
confirmed. If it can be safely reordered (using
IsCummutative) then the change is performed on the data,
other subscribers are notified and it is added to the list of
changes. If the new change is not commutative with
changes that were committed after it’s transaction ID, then
it is discarded and its client is notified that the change was
rejected.

When subscribing clients are notified of changes, they
return a confirmation to the server. This confirmation
contains the last transaction ID known to the client. Using
this information the server can update LUN (least
unconfirmed notification) and remove any earlier changes
from its list of saved changes. Those earlier changes are
now known to all subscribing clients and need not be
considered in later client requests.

From the server’s point of view it is checking to make sure
that changes from each client are in order with any changes
that a client does not yet know about or that their
respective order does not matter. Any unreorderable

changes are rejected and the client is notified. This is
highly reliable and highly scalable if one assumes that
there are many servers in the world each operating
independently. Use of LUN and timeouts on subscriptions
keep the server burden from becoming too large.

Client conflict resolution algorithm
The client algorithm is more complicated than the server
algorithm because it must repair conflicts where the server
need only reject them. The client layer must concern itself
with three types of events: 1) Changes have been
performed by the user interface but not yet sent to the
server, 2) A change that has been sent to the server, but not
yet confirmed by the server. 3) Change notifications from
the server that were caused by other clients. One of the
fundamental principles of our algorithms is that neither the
server management nor the user interface can be blocked.
The user must be able to move forward as if there was no
server involved. The only perceived network delay should
be when new data is being retrieved using the GET
method.

In general the client algorithm works by keeping track of
changes that the server does not yet know about and the
any change that has been sent to the server, but not yet
confirmed. When the client’s user interface makes a
change to the local copy of the data, a change record (with
undo information) is added to the list of changes to be
forwarded to server and the interface continues on its way.

When a client receives a response from the server to its
change request it will either be an acceptance of the change
or a rejection. If the change was accepted, it is forgotten. If
the change was rejected, then the rejected change must be
undone as well as any pending changes (not yet sent to the
server) that are in conflict (using IsCommutative). Any
changes in the pending queue that are not in conflict are
retained. Whenever changes are undone, the normal
Model-View-Controller mechanisms handle the user
interface update.

A client also receives notification of changes that the
server received from other clients. When one of these
notifications is received, the client must check the change
against all pending changes. Any pending changes that are
in conflict must be undone. Undoing a pending change may
also cause additional later pending changes to be undone.
The notification change can then be performed. As long as
two clients are not trying to manipulate the same data at the
same time, our simple IsCommutative check for reordering
will not flag any conflicts. If there is a conflict, however,
the data will revert to whatever change reached the server
first. This guarantees that all clients will settle to the same
data, but may cause a user’s changes to suddenly revert to
another value. However, the user cannot distinguish such
an undo from any other action performed on another client.
Therefore we do not see this as a serious problem.

There is still a small issue of a change P that has already
been sent to the server and is not yet confirmed by the
server when the client receives notification of a change C
by a different client. It is possible that the client’s
implementation of IsCommutative is more conservative
than the server’s implementation. In this case the client will
see a conflict between P and C and will undo P. The server,
however, has not yet considered P and may, by more
careful inspection, determine that P and C are not conflict
and therefore will accept P. To handle this case, when the
client receives C and finds a conflict it will undo P and any
other pending change that conflicts with either P or C, but
it will save P. The client is predicting that P will be
rejected. Later if P is rejected, it is discarded. However, if
P is accepted, the client can take the saved copy of P and
treat it like a new change notification from the server,
undoing any pending changes that are in conflict and
redoing the change P.

Summary of conflict resolution
By using the server's transaction IDs as our representation
of time, we can make sure that every client is finalizing
changes in the same order or in an order that will produce
identical results. Because of the limited set of editing
operations we can easily reason about all possible ordering
conflicts among changes and provide for exact undoing.
The key to the conflict detection is the IsCommutative test,
which need not be identical among clients and servers as
long as it never returns a false positive. This approach
allows both servers and clients to never block and ensures
that eventually the servers and all clients will settle on the
same data values. This algorithm also imposes very
minimal implementation consistencies. We believe that
minimizing required consistencies is very important to
scaling this infrastructure to the size of the Internet.

CONCLUSION
Nomadic computing requires that people be able to access
information in a wide variety of physical situations. One
approach to this is to require users to carry their computing
with them. This paper describes an architecture whereby
people can acquire interactive resources as they encounter
them in their environment. We call this action a Capture.

Ubiquitous computing postulates that there be a wide
variety of interactive services in the world and that we can
computationally access them. Our architecture provides the
concept of Join by which a user can acquire access to a
service’s interface.

By means of Join and Capture users can assemble a variety
of multimodal resources to apply to a particular problem.
The XWeb SUBSCRIBE mechanism provides the
framework for all of these clients to operate together on a
problem. For example, a user can combine speech clients
with pointer-based clients for a more effective total
interaction. Join and Capture provide a simple framework

for users to exploit interactive resources and services as
they encounter them in their environment.

We have also presented a robust algorithm for guaranteeing
consistent data among clients manipulating to the same
data. This algorithm can easily scale to many servers and
many clients in a spirit similar to the architecture of the
WWW.

REFERENCES
[BORR 00] Borriello, G. and Want, R. “Embedded

Computation meets the World Wide Web,”
Communications of the ACM 43(5), (May 2000).

[BRUM 00a] Brumitt, B., Krumm, J., Meyers, B., and
Shafer, S. “Ubiquitous Computing & The Role of
Geometry,” IEEE Personal Communications, (August
2000).

[BRUM 00b] Brumitt, B., Meyers, B., Krumm, J., Kern,
A., and Shafer, S., “EasyLiving: Technologies for
Intelligent Environments” Handheld and Ubiquitous
Computing, (Sept 2000).

[COHE 97] Cohen, P. R., Johnston, M., McGee, D., Oviatt,
S., Pittman, J., Smith, I., Chen, L., and Clow, J.,
“QuickSet: Multimodal Interaction for Distributed
Applications,” Proceedings of the fifth ACM
international conference on Multimedia, (1997).

[ELLE 89] Ellis, C. A., and Gibbs, S. J., "Concurrency
Control in Groupware Systems", Proceedings of the
1989 ACM SIGMOD International Conference on
Management of Data, 1989.

[GREE 94] Greenberg, S., and Marwood, D., "Real Time
Groupware as a Distributed System: Cuncurrency
Control and its Effect on the Interface," Proceedings of
CSCW '94, (Oct 1994).

[HART 99] Harter, A., Hopper, A., Steggles, P., Ward, A.,
and Webster, P. “The Anatomy of a Context-Aware
Application.” Mobicom ’99, ACM (1999)

[OLSE 00] Olsen, D. R., Jefferies, S., Nielsen, T., Moyes,
W., Fredrickson, P., “Cross-modal Interaction using
XWeb”, ACM Symposium on User Interface Software
and Technology UIST ’00, (2000).

[OLSE 01] Olsen, D. R., Nielsen, T., “Laser Pointer
Interaction”, Human Factors in Computing Systems
(CHI Letters, vol 3(1)), (2001).

 [REKI 95] Rekimoto, J., and Nagao, K. “The World
through the Computer: Computer Augmented
Interaction with Real World Environments,” ACM
Symposium on User Interface Software and
Technology (UIST 95), (1995).

[REKI 98] Rekimoto, J., “A Multiple Device Approach for
Supporting Whiteboard-based Interactions”, Human
Factors in Computing Systems (CHI 98), ACM,
(1998).

[REKI 00] Rekimoto, J., and Ayatsuka, Y., “CyberCode:
Designing Augmented Reality Environments with
Visual Tags,” Designing Augmented Reality
Environments (DARE 2000), ACM, (2000).

[WALD 99] Waldo, J. “The Jini Architecture for Network-
centric Computing,” Communications of the ACM
(July 1999).

[WANT 99] Want, R., Fishkin, K. P., Gujar, A., and
Harrison, B. L., “Bridging Physical and Virtual
Worlds with Electronic Tags,” Human Factors in
Computing Systems (CHI 99),ACM (1999).

[WEIS 93] Weiser, M. “Some Computer Science Issues in
Ubiquitous Computing”, Communications of the
ACM, Vol 36(7), (1993).

	Join and Capture: A Model for Nomadic Interaction
	ABSTRACT
	Keywords

	INTRODUCTION
	PRIOR WORK
	XWEB
	XWeb terms
	Services
	Clients
	Views and tasks
	SUBSCRIBE
	Sessions
	Connecting XWeb to the physical world

	JOIN AND CAPTURE
	Join
	Capture
	Implementation requirements

	JAVA RING
	PEOPLE WATCHER
	Setting up a People Watcher Room
	Interacting with the People Watcher

	MANAGING MULTI-DEVICE INTERACTION
	
	Commutative changes

	Server conflict resolution algorithm
	Client conflict resolution algorithm
	Summary of conflict resolution

	CONCLUSION
	REFERENCES

