
Evaluating User Interface Systems Research
Dan R. Olsen Jr.

Brigham Young University
Computer Science Department, Provo, Utah, USA

olsen@cs.byu.edu,

ABSTRACT
The development of user interface systems has languished
with the stability of desktop computing. Future systems,
however, that are off-the-desktop, nomadic or physical in
nature will involve new devices and new software systems
for creating interactive applications. Simple usability
testing is not adequate for evaluating complex systems. A
set of criteria for evaluating new UI systems work is
presented.

General Terms:
Human Factors

Author Keywords:
User Interface Systems Evaluation

ACM Classification Keywords
H.5.2 User Interfaces

INTRODUCTION
In the early days of graphical user interfaces, the creation of
new architectures for interactive systems was a lively and
healthy area of research. This has declined in recent years.
There are three reasons for this decline in new systems
proposals. The first is that, unlike those early days, there are
essentially three stable platforms (Windows, Mac, Linux)
upon which virtually all software is built and those
platforms have dictated the user interface architecture. This
is in contrast to the state of UI research 15 years ago when
there were many competing toolkits and platforms. The
second is that the stability of these platforms has lead to a
new generation of researchers who lack skills in toolkit or
windowing system architecture and design. The third reason
is the lack of articulate criteria for evaluating systems
architectures. This paper addresses the last question of
“How should we evaluate new user interface systems so
that true progress is being made?”

WHY UI SYSTEMS RESEARCH?
Before addressing the evaluation question we must first
consider the value of user interface systems research. The
systems we have are stable. Applications are being written.
Work is progressing. The users are happy (sort of). Why
then does the world need yet another windowing system?

Forces for change
A very important reason for new UI systems architectures is
that many of the hardware and operating system
assumptions that drove the designs of early systems no
longer hold. Saving a byte of memory, the time criticality of
dispatching an input event to the right window or lack of
CPU power for geometric and image transformations are no
longer an issue. Yet those assumptions are built into the
functionality of existing systems. The constraints of screen
size are rapidly falling and we are finding that interaction in
a 10M pixel space is very different from interaction in a
250K pixel space.

Our assumptions about users and their expertise have
radically changed. Most of our windowing systems are
designed to deal with a populace who had never used a
graphical user interface. That assumption is no longer valid.
The rising generation is completely comfortable with
computing technology in a variety of forms and is
increasingly comfortable with change.

Our existing system models are baring the inclusion of
many of the interactive techniques that have been
developed. Research as shown that manipulating the mouse
gain can improve selection in various spaces [1] yet this
does not fit smoothly into any UI system model. Cameras
and touch tables produce inputs that are the size of a hand
or finger rather than a point, yet we force such techniques
into the standard mouse point model because that is all that
our systems support. Multiple input points and multiple
users are all discarded when compressing everything into
the mouse/keyboard input model. Lots of good research
into input techniques will never be deployed until better
systems models are created to unify these techniques for
application developers.

An important reason for new systems is the advent of new
interactive platforms. The WWW forms a huge base of
interactive use, yet its interaction model is primitive and the
toolkits built around it are worse. People are increasingly
moving their digital lives to PDAs, cell phones and other

portable platforms. Many people live and work across many
platforms and interact with many people, yet our UI
systems architectures support none of this.

In the early days of the Mac and Windows, an industry
leader said “Almost none of our customers own a mouse or
a graphics card. The installed market is too large and too
entrenched to change.” Barely 5 years later that company
had fallen from market dominance to near irrelevance
because the market had moved to screen/keyboard/mouse.
We now stand at a similar position. Systems based on one
screen, one keyboard and one mouse are the new equivalent
of command-line interfaces. We need new UI systems
solutions. Our current systems architectures are beginning
to impede progress rather than empower it.

Value added by UI systems architecture
Before addressing the evaluation of research claims we
should look at the value UI systems architectures bring to
the table.

Reduce development viscosity
A good UI toolkit will reduce the time it takes to create a
new solution. The faster new solutions can be created, the
easier it is to try more solutions on users. The more
solutions that users experience, the more effective the UI
design process will be.

Least resistance to good solutions
UI programmers, like most programmers, are optimizers.
They tend to follow the path of least resistance. Apple spent
a lot of time and effort writing a style manual and
evangelizing the value of a common look and feel. None of
this effort had the impact of providing a standard widget set
built into the system that was available for free. The toolkit
made adoption of a common look and feel much cheaper
and easier than custom solutions.

A related concept is that toolkits can encapsulate and
simplify expertise. When exploration of a space of
possibilities finally settles on a few good solutions, these
can be packaged into a toolkit to simplify the development
of future systems.

Lower skill barriers
Bill Buxton’s Menulay [2] demonstrated that large portions
of the UI design problem could be handled by drawing
rather than code. Systems like HyperCard and Visual Basic
commercialized these ideas and allowed people with a
much different set of skills to participate in UI
development. The right toolkit design meant that artists and
designers rather than programmers were dictating the visual
appearance of user interfaces. Good toolkit design can
expand the set of people who can effectively create new
applications.

Power in common infrastructure
Though the current mouse/keyboard event model is
standing in the way of many new interactive devices and

techniques, it has also empowered many new techniques.
Pen-based interfaces have benefited from pretending to be a
mouse. Though the pen has many unique advantages over a
mouse, by pretending to be a mouse it is usable for most
existing applications. In our current event model, any
device that can produce 2D input events is usable by any
existing application. This has real power in supporting new
combinations to create new solutions. What we need is an
upgrade to this common denominator to empower more
advanced techniques.

The HTTP/HTML standard is a clear example of the power
of common infrastructure. By adhering to this simple
standard any user can acquire a browser that will give them
access to a vast number of services. Conversely any new
service that adheres to the standard can gain access to
multitudes of potential customers.

UI toolkits and system architectures define the ways in
which interactive components are combined. The power of
such techniques is also their curse. The importance of such
standards makes the cost of changing them very high.
However, if we do not search out and develop new ways to
combine UI technologies we stunt our potential.

Enabling scale
Laying stable foundations makes possible larger more
powerful solutions than ever before. The set of applications
that can be economically built without a good toolkit is
substantially smaller than with one.

THE USABILITY TRAP
When evaluating interactive systems the first concept that
comes to mind is usability. There are several common
measures of usability such as time to complete a standard
task and time to reach a certain level of proficiency.
Usability measures have driven a great deal of good
research in the CHI community.

Many usability experiments are built on three key
assumptions. The first is “walk up and use.” This assumes
that all potential users have minimal training. This is a great
goal for home appliances and for software tools used by
many people. This goal also works if there is a large pool of
potential users with shared expertise, such as secretaries or
chemists. The assumption is that anyone with the shared
expertise should be able to walk up and use the system.
This does not work so well for problem domains that
require substantial specialized expertise.

The second is the standardized task assumption. To make
valid comparisons between systems one must have a task
that is reasonably similar between the two systems and does
not have many confounding complexities. The task of
entering a string of text is fairly standard across any set of
text entry techniques. There are not many ways to approach
the task. A task of painting a picture or designing a circuit
is not a good task for a usability experiment. There are too
many variables in the task to make valid comparisons.

There are also too many variations in the potential user
population. A task that is suitable for a usability experiment
must have low inherent variability so that any variance can
be assigned to the differing techniques being tested not to
variations in approach to the task or user expertise.

The third assumption is scale of the problem. The
economics of usability testing are such that it must be
possible to complete any test in 1-2 hours. More extensive
testing may allow multiple sessions over many weeks but
any practical experiment cannot afford thousands or tens of
thousands of experiment hours. A test using 10
programmers over 6 months would incur at least $300,000
in user subject compensation for just that one test. The cost
is high and the statistical significance very low.

Usability testing is attractive because it can produce a
statistically valid, clearly explained, easily compared result.
However, toolkit and UI architecture work rarely meets any
of the three assumptions of usability testing.

Any UI toolkit that addresses substantive problems will
require expertise in using the toolkit. By definition any new
toolkit will have no population that possesses that expertise.
Any comparison between a new toolkit and an existing
toolkit will be confounded by familiarity with the existing
toolkit and the need for expertise in using the new one. The
only way to eliminate this confound is to find a population
that is equally ignorant of both systems. This produces
comparison results that are not representative of the
intended populations of either tool.

The standardized task assumption is also violated in
systems architecture research. Any problem that requires a
system architecture or a toolkit in its solution is by nature
complex. UI applications are known to be complex with
many possible paths to a solution. Meaningful comparisons
between two tools for a realistically complex problem are
confounded in so many ways as to make statistical
comparisons more fantasy than fact.

The task scale assumption is also violated by UI systems
work. Building a significant application using two different
tools, even if valid comparisons were possible, would be
very costly. Performing many iterations on a toolkit
solution using this evaluation technique would be out of the
question.

The usability trap lies in how we respond to nature of
usability measurement for systems architectures and
toolkits. There are those who respond with “If it can’t be
measured it is not research.” This reduces research to the
study of the trivially measurable. There is a slightly
different response which is “Focus on the measurable it is
easier to publish.” This limits our power to effect
significant change. A much more interesting response
would be “If not usability then how do we evaluate
systems?” This is the topic of this paper.

EVALUATING EFFECTIVENESS OF SYSTEMS AND
TOOLS
To find ways to evaluate systems and tools we must revisit
the claims that are made. Our list of advantages presented
for toolkits and systems provides us a framework of
possible claims. Given a set of possible claims we can then
outline ways to demonstrate each of them.

Importance
Before all other claims a system or toolkit must
demonstrate importance. It must be shown that the problem
addressed by the tool is of interest to a large population and
that the tool will make a substantive difference. Statistical
analysis of data is an important safeguard in quantitative
research. However, if a tool requires careful statistical
analysis to prove its value, the innovation is frequently not
important enough to make a difference.

Tools are invariably associated with expertise gained over
time. People will not discard a familiar tool and its
associated expertise for a 1% improvement. In most cases at
least a 100% improvement is required for someone to
change tools. Without establishing the importance of the
problem and its proposed solution, nothing else matters.

Problem not previously solved
This is one of the more compelling claims for a tool. This
claim says that there is a significant population P that has
an important problem X that has no current solution. It is a
powerful claim to demonstrate that X can be solved
effectively with a new tool. Usability testing is irrelevant
when comparing what can be done against what cannot.

Such a claim is seriously weakened if there is only a single
problem X. What has been created is not a design tool but
an application. That application may be important to the
population P, in which case it may be more appropriately
published in the literature of population P. This claim is
strengthened if population P is very, very large (i.e.
everyone who can read). The larger and more diverse
population P is, the stronger the claim to the importance of
a solution. The World Wide Web could make the claim that
previously it was impossible for non-programmers to
interconnect many disparate information resources.

Generality
The new solution claim is much stronger if there are several
populations Pi that each have problems Xi that do not have
effective solutions with existing technology. If the new tool
can solve all of Xi then a claim for a general tool is quite
strong. The generality of the new solution claim is
strengthened as the populations Pi are increasingly diverse
from each other.

The problem with this claim is that proving solutions for all
Xi is not possible. In fact the more general the tool the less
likely one can demonstrate all of the possible solutions for
which the tool is useful. The best proof of a generality
claim is the diversity of the Xi for which a solution is

demonstrated. If one has used the tool to solve three diverse
problems then one can argue that the tool solves most of the
problems lying in the space between the demonstrated
solutions. The greater the diversity and the larger the
number of demonstrated solutions, the stronger the claim.

Reduce solution viscosity
One of the important attributes of good tools is that they
foster good design by reducing the effort required to iterate
on many possible solutions. The more cumbersome the tool,
the greater the viscosity in the design process with fewer
and less diverse alternatives being explored. There are at
least three ways in which a tool can reduce solution
viscosity: flexibility, expressive leverage and expressive
match.

Flexibility
A UI tool is flexible if it is possible to make rapid design
changes that then can be evaluated by users. This has been
the claim of interpreted programming languages. By
eliminating the compile step, it is faster to try solutions. By
evaluating code created at run-time more flexible solutions
are possible. The flexibility claim is relatively easy to
support. Define some interesting and diverse set of possible
design changes and show that such changes take
significantly less effort in the new tool relative to the
competition.

Expressive Leverage
Expressive leverage is where a designer can accomplish
more by expressing less. The dominant cost of any design
processes is the making, expression and evaluation of
choices. Expressive leverage is achieved when a tool
reduces the total number of choices that a designer must
make to express a desired solution. There are several ways
this might be done.

Eliminating repetitive choices is an easy technique for
achieving leverage. The simplest mechanism is reuse. The
claim is that a large class of problem solutions include the
expression of choice Y, yet Y is the same across all of these
solutions. A tool that encapsulates Y and thus eliminates
repetition is more expressive. One must show that every
solution in the class of solutions includes Y and that every
instance of Y is similar or show that the differences are
easily parameterized.

There are pitfalls to the “generalize and reuse” strategy for
expressive leverage. In many cases the manipulation of the
parameters is more complex than redoing a custom instance
of Y. This comes when there is more variation in Y than
was originally anticipated. This also comes when one
generalizes too far.

A good example of this generalization fallacy is the Table
widget. At first glance it has rows, columns and cells.
Columns have headers and cells contain text. It is relatively
easy to write such a widget and its interface to the data for
the model is quite straightforward. The temptation,

however, is to add fonts, colors, special layout rules,
arbitrary data types for the cells, icons for the columns and
specialized cell editors with four or five different ways of
embedding those editors into the cells/table layout.
Suddenly the correct specification of the parameters to the
Table widget is more complex and less predictable than
implementing it from scratch. A generalize and reuse
strategy must demonstrate that there has been a clear
reduction in the number of choices that a designer must
make and that the implications of those choices are clear to
the designer.

A second means for reducing the required number of design
choices comes from observing that many choices are not
independent but are almost always implied by other
choices. Having made choices A, B and C, then design
choices U, V and W are determined. We get our expressive
leverage by automatically computing U, V and W rather
than requiring the designer to express them. An example
would be the automatic calculation of complimentary colors
once a background color is selected. A variation is that
default values U, V and W are computed and then only
changed when necessary.

A third means for achieving expressive leverage comes
from the progress of technology. For example the GIGO
event handling system [3] was widely acclaimed in its time
because its small memory footprint and event dispatch
mechanism that could be accomplished in less than 10
machine instructions. For years various event dispatch
mechanisms were proposed to optimize the interactive loop.
This need for optimal event dispatch imposed various
design choices on programmers to achieve the desired
speed. When 500 KHz processors became 3GHz processors
these design choices became irrelevant. Eliminating such
choices and simplifying what a designer must do becomes
possible as more memory, processor and communications
power becomes available.

Claims of increased expressive leverage may often be
unjustly discounted. Most of the leverage comes from some
insight about the way in which systems have been used or
developed. Once the insight is exposed, the implications are
obvious. It is very tempting for reviewers to site the
obvious nature of the implication and thus discount the
value of the insight. It is incumbent on the reviewer to
demonstrate that the insight is either trivial or was already
known.

Expressive Match
Tools for creating new user interfaces can be improved by
increasing the expressive match of the system. Expressive
match is an estimate of how close the means for expressing
design choices are to the problem being solved. For
example one can express a color in hexadecimal or one can
pop up a color picker that displays the color space in
various ways and shows the color currently selected. Both
are completely accurate means for expressing color, but the
color picker is a much closer match to the design problem.

Most interface design environments provide a tool for
placing widgets in a form and dragging them around until
the resulting layout is visually appealing and readily
understood. Encoding the coordinates of each widget in
C++ or a text file will accomplish the same goal, but the
visual tool is a better expressive match for the problem of
creating a usable and pleasing layout.

There are several requirements when making a claim of
greater expressive match. One must show that the problem
which the new notation or tool addresses is an important
one. One must then demonstrate that the new form of
expression is actually a better match. If the problems are
small enough one can compare times to create a design.
This may or may not fall into the usability trap described
above. Frequently greater expressive match is tied to a
claim to lower skill barriers.

Another test for expressive match is a “design flaw
challenge”. A design that is deficient in some way is
encoded in the two different forms. Users are each given
one of the forms of expression and asked to locate and
remedy the flaw. Time, errors, difficulties and success rates
can be used to compare two forms of expression. In many
cases such challenges are trivially obvious. “Match this
color” can be given in hex or in a color picker. For most
people the task is virtually impossible in hex and even for
experienced designers there is a lot of trial and error
required. Similarly a flaw in the input handling of some
widget can be posed. Some designers are given state
diagrams and some are given the equivalent Java/Swing
code. Each is challenged to find and remedy the flaw.

Greater expressive match introduces the difficulty of
integrating multiple forms of representation and their
associated tools. A long term challenge in the UI
community has been the integration of various
representations with program code. Despite years of
research and dozens of alternative proposals, algorithms
and data structures are still best represented in a general-
purpose programming language. State machines showed
real promise as a representation for input, yet they always
reached expressive limitations that required a transition to
code and the transition was awkward. Visual Basic
addressed this problem by integrating a full interpreted
programming language into their UI layout tool. The key
point is that any new form of expression must be
computationally complete or it must have a clear integration
mechanism with a programming language. When there are
many different forms of expression, the tools must show
how they are integrated effectively with each other. In
many cases the integration effort swamps the benefits of the
new tool or notation.

Empowering new design participants
The previous set of claims focused on the speed or ease
with which a user interface could be designed. Tools can
also make a contribution by introducing new populations to
the UI design process. Frequently this is done by dealing

with expressive leverage and expressive match issues, but
the claims are different. The “new design participants”
claim is that there is some population who would benefit by
being more directly involved with the UI design process. It
has long been claimed that empowering artists will lead to
better visual designs.

The first part of the claim must be to describe some
population of participants and show why they should be
involved in the process. Secondly one must establish why
existing tools are not acceptable for this population. This
may include lack of appropriate training, different norms of
expression or design goals that are not supported by
existing tools. Lastly one must demonstrate that the new
tools are accessible, easier or more effective for this desired
population.

The simplest criterion is that the existing tools simply could
not be used by the target population at all. Demonstrating
that artists cannot reliably encode colors in hex is an easy
claim to make. A second claim is that the new tools are
easier for this population. Here usability tests are possible.
However, the representation may not scale to full-sized UI
designs and the usability trap will be reintroduced. There is
also an importance issue. If there is not a substantial
improvement in ease or usability to this population or the
population is only peripherally involved then there just may
not be much value in the new tool. People will only change
tools for substantial (2 times or better) improvements. The
last claim is that the resulting UI designs are “better” when
the new tools are used by this population. The question of
defining “better” is problematic.

Addressing a new problem
Systems that address problems/techniques not possible in
existing tools may have a great claim for attention. To be
significant the new problem must meet the generality claim
described earlier.

Power in combination
Many tools demonstrate their effectiveness by supporting
combinations of more basic building blocks. There are two
basic variations of this claim. The first is an inductive claim
that an infinite set of solutions can be built from primitives
and their combinations. The second is the N to 1 reduction.
Both of these approaches are based on clearly defining
mechanisms for combining pieces of design to create a
more powerful whole.

Inductive Combination
This is the basis for grammars, UI component trees and a
variety of other innovations. The idea is that there is some
set of primitive design components and some mechanism
for combining them into more complex designs. Some
simple set of string tokens can be combined using non-
terminals and production rules to create an infinite number
of different programming languages. Simple widgets that
each perform some interactive task can be combined using

panes, tabs, tables and other visual constructors to create an
infinitely diverse set of UI designs.

Making this sort of claim requires that one show that the set
of primitives is either relatively small or can be easily
extended. User interface toolkits use both of these
strategies. There is usually a small set of primitive widgets
(less than 30) from which many interesting designs can be
built. In addition, most toolkits provide a mechanism for
creating new primitives that can be readily integrated into
the set. The power comes from the means for combining
these pieces into more complex designs. The induction to
an infinite set of possibilities comes when any of these
combinations can be used wherever a primitive solution can
be used.

This claim introduces the question of coverage. For
example, context-free grammars define an infinite set of
textual languages. However, it can be readily proved that
they cannot represent all languages. It can also be readily
shown that combining menus, scroll-bars, labels and text
boxes into forms can produce an infinite number of UI
designs. However, many UI designs (painting or drawing
programs) will not fit this model. Virtually any
combination scheme will leave out some design solutions.
Therefore one must show that the set of designs within the
system are interesting and that there are mechanisms
outside the system for addressing issues that are not
covered. Compilers added symbol tables to context-free
grammars to make them effective. UI toolkits generally
provide a means for adding new primitive components to
provide extensibility.

Simplifying Interconnection
There are many situations where components must
communicate and integrate with each other. This
interconnectivity is critical to the deployment of new
technology. A system of N components that must work
together imposes a serious burden on the N+1 component.
If every component must implement an interconnection
with every other component then the N+1 component must
include N interconnections with other pieces. A good
interconnection model will reduce the cost of a new
component from N to 1. With a good interconnection model
the new component must only implement the standard
interface. It will then be integrated with all N existing
components.

An early example was the use of pipes in UNIX.
Applications would read from standard-in and write to
standard-out. Pipes could connect the standard-out of one
program directly to the standard-in of another, allowing
applications to be plugged together in any number of useful
ways without new code.

A more compelling example is the World Wide Web. When
one creates a new web browser one automatically inherits
the value of all of the web sites that have been created.
When one creates a new web site one inherits the value of

all of the browsers that have been installed. Adding a new
browser or a new site incurs only the cost of that site and
not the cost of creating, connecting or deploying the
remainder of the needed infrastructure. The power is in the
connectivity architecture that reduces cost from N (one for
every related component) to 1.

To make the interconnection claim, one must show 1) that
there is an interesting diversity of choices on both sides of
the connective architecture, 2) that they are all cleanly
supported by the architecture, and 3) that the space of
combinations is interesting and non-trivial.

Ease of Combination
The fact that architectural components can connect is
generally not sufficient. It is important that the
interconnection be simple and straightforward. In most UI
toolkits a new widget must only implement the redraw()
and resize() methods to integrate with the rest of the
system. Additional event-handling methods will provide
interactivity but these two are sufficient. Many of the
interconnection complexities are hidden in inherited code.
The WWW has a similar ease of combination. The HTTP
protocol that connects browsers to servers is very
straightforward and easy to learn. My personal counter
example is SOAP which took the relatively simple HTTP
and XML techniques and created a very complex model for
interconnecting with web services. This model is very
difficult to use without additional layers of code generation
on top to obscure its complexity.

Can it scale up?
An important question that must be asked of every new UI
system is whether it can scale up to large problems. This
was the fundamental drawback of state machines for
describing user interface dialogs. For simple examples like
dragging a rubber-band line, the state machine dialog was
very clear and simple. However, for any reasonable
application the representation acquired hundreds of states
interconnecting in hundreds of ways that were impossible to
visualize, present on a screen, or debug. Constraint systems
have similar problems. They nicely model small local
relationships yet produce serious debugging challenges
when hundreds of constraints are all being evaluated
simultaneously. Any new UI system must either show that
it can scale up to the size of realistic problems or that such
scaling is irrelevant because there is an important class of
smaller problems that the new system addresses. To
evaluate this criteria one must try the system on a
reasonably large problem and show that the advantages of
the new model still hold.

SUMMARY
User interface technology, like any other science, moves
forward based on the ability to evaluate new improvements
to ensure that progress is being made. However, simple
metrics can produce simplistic progress that is not
necessarily meaningful. Complex systems generally do not

yield to simple controlled experimentation. This is mostly
due to the fact that good systems conquer complexity and
complexity confounds controlled experimentation. This
paper shows a variety of alternative standards by which
complex systems can be compared and evaluated. These
criteria are not novel but recently have been out of favor.
We must avoid the trap of only creating what a usability
test can measure.

REFERENCES

1. Blanch, R., Guiard, Y., and Beaudouin-Lafon, M.,

“Semantic Pointing: Improving Target Acquisition with
Control-Display Ratio Adaptation” Human Factors in
Computing Systems (CHI ’04), ACM (2004), pp 519-
526.

2. Buxton, W., Lamb, M. R., Sherman, D., and Smith, K.
C., “Towards a Comprehensive User Interface
Management System” Computer Graphics (SIGGRAPH
’83), ACM, (1983), pp. 35-42.

ACKNOWLEGEMENTS
Though the opinions are the author’s own they have been
influenced by discussions with Scott Hudson, James
Landay, Saul Greenberg and Ben Bederson. 3. Rosenthal, D. S. H., “Managing Graphical Resources”

Computer Graphics 17(1), ACM (1983), pp. 38-45.

	General Terms:
	Author Keywords:
	ACM Classification Keywords
	Forces for change
	Value added by UI systems architecture
	Reduce development viscosity
	Least resistance to good solutions
	Lower skill barriers
	Power in common infrastructure
	Enabling scale

	Importance
	Problem not previously solved
	Generality
	Reduce solution viscosity
	Flexibility
	Expressive Leverage
	Expressive Match

	Empowering new design participants
	Addressing a new problem
	Power in combination
	Inductive Combination
	Simplifying Interconnection
	Ease of Combination

	Can it scale up?

