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ABSTRACT 
The development of user interface systems has languished 
with the stability of desktop computing. Future systems, 
however, that are off-the-desktop, nomadic or physical in 
nature will involve new devices and new software systems 
for creating interactive applications. Simple usability 
testing is not adequate for evaluating complex systems. A 
set of criteria for evaluating new UI systems work is 
presented. 
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INTRODUCTION 
In the early days of graphical user interfaces, the creation of 
new architectures for interactive systems was a lively and 
healthy area of research. This has declined in recent years. 
There are three reasons for this decline in new systems 
proposals. The first is that, unlike those early days, there are 
essentially three stable platforms (Windows, Mac, Linux) 
upon which virtually all software is built and those 
platforms have dictated the user interface architecture. This 
is in contrast to the state of UI research 15 years ago when 
there were many competing toolkits and platforms. The 
second is that the stability of these platforms has lead to a 
new generation of researchers who lack skills in toolkit or 
windowing system architecture and design. The third reason 
is the lack of articulate criteria for evaluating systems 
architectures. This paper addresses the last question of 
“How should we evaluate new user interface systems so 
that true progress is being made?” 

WHY UI SYSTEMS RESEARCH? 
Before addressing the evaluation question we must first 
consider the value of user interface systems research. The 
systems we have are stable. Applications are being written. 
Work is progressing. The users are happy (sort of). Why 
then does the world need yet another windowing system?  

Forces for change 
A very important reason for new UI systems architectures is 
that many of the hardware and operating system 
assumptions that drove the designs of early systems no 
longer hold. Saving a byte of memory, the time criticality of 
dispatching an input event to the right window or lack of 
CPU power for geometric and image transformations are no 
longer an issue. Yet those assumptions are built into the 
functionality of existing systems. The constraints of screen 
size are rapidly falling and we are finding that interaction in 
a 10M pixel space is very different from interaction in a 
250K pixel space. 

Our assumptions about users and their expertise have 
radically changed. Most of our windowing systems are 
designed to deal with a populace who had never used a 
graphical user interface. That assumption is no longer valid. 
The rising generation is completely comfortable with 
computing technology in a variety of forms and is 
increasingly comfortable with change.  

Our existing system models are baring the inclusion of 
many of the interactive techniques that have been 
developed. Research as shown that manipulating the mouse 
gain can improve selection in various spaces [1] yet this 
does not fit smoothly into any UI system model. Cameras 
and touch tables produce inputs that are the size of a hand 
or finger rather than a point, yet we force such techniques 
into the standard mouse point model because that is all that 
our systems support. Multiple input points and multiple 
users are all discarded when compressing everything into 
the mouse/keyboard input model. Lots of good research 
into input techniques will never be deployed until better 
systems models are created to unify these techniques for 
application developers. 

 

An important reason for new systems is the advent of new 
interactive platforms. The WWW forms a huge base of 
interactive use, yet its interaction model is primitive and the 
toolkits built around it are worse. People are increasingly 
moving their digital lives to PDAs, cell phones and other 

  



portable platforms. Many people live and work across many 
platforms and interact with many people, yet our UI 
systems architectures support none of this. 

In the early days of the Mac and Windows, an industry 
leader said “Almost none of our customers own a mouse or 
a graphics card. The installed market is too large and too 
entrenched to change.” Barely 5 years later that company 
had fallen from market dominance to near irrelevance 
because the market had moved to screen/keyboard/mouse. 
We now stand at a similar position. Systems based on one 
screen, one keyboard and one mouse are the new equivalent 
of command-line interfaces. We need new UI systems 
solutions. Our current systems architectures are beginning 
to impede progress rather than empower it.  

Value added by UI systems architecture 
Before addressing the evaluation of research claims we 
should look at the value UI systems architectures bring to 
the table. 

Reduce development viscosity 
A good UI toolkit will reduce the time it takes to create a 
new solution. The faster new solutions can be created, the 
easier it is to try more solutions on users. The more 
solutions that users experience, the more effective the UI 
design process will be. 

Least resistance to good solutions 
UI programmers, like most programmers, are optimizers. 
They tend to follow the path of least resistance. Apple spent 
a lot of time and effort writing a style manual and 
evangelizing the value of a common look and feel. None of 
this effort had the impact of providing a standard widget set 
built into the system that was available for free. The toolkit 
made adoption of a common look and feel much cheaper 
and easier than custom solutions.  

A related concept is that toolkits can encapsulate and 
simplify expertise. When exploration of a space of 
possibilities finally settles on a few good solutions, these 
can be packaged into a toolkit to simplify the development 
of future systems. 

Lower skill barriers 
Bill Buxton’s Menulay [2] demonstrated that large portions 
of the UI design problem could be handled by drawing 
rather than code. Systems like HyperCard and Visual Basic 
commercialized these ideas and allowed people with a 
much different set of skills to participate in UI 
development. The right toolkit design meant that artists and 
designers rather than programmers were dictating the visual 
appearance of user interfaces. Good toolkit design can 
expand the set of people who can effectively create new 
applications.  

Power in common infrastructure 
Though the current mouse/keyboard event model is 
standing in the way of many new interactive devices and 

techniques, it has also empowered many new techniques. 
Pen-based interfaces have benefited from pretending to be a 
mouse. Though the pen has many unique advantages over a 
mouse, by pretending to be a mouse it is usable for most 
existing applications. In our current event model, any 
device that can produce 2D input events is usable by any 
existing application. This has real power in supporting new 
combinations to create new solutions. What we need is an 
upgrade to this common denominator to empower more 
advanced techniques. 

The HTTP/HTML standard is a clear example of the power 
of common infrastructure. By adhering to this simple 
standard any user can acquire a browser that will give them 
access to a vast number of services. Conversely any new 
service that adheres to the standard can gain access to 
multitudes of potential customers. 

UI toolkits and system architectures define the ways in 
which interactive components are combined. The power of 
such techniques is also their curse. The importance of such 
standards makes the cost of changing them very high. 
However, if we do not search out and develop new ways to 
combine UI technologies we stunt our potential. 

Enabling scale 
Laying stable foundations makes possible larger more 
powerful solutions than ever before. The set of applications 
that can be economically built without a good toolkit is 
substantially smaller than with one.  

THE USABILITY TRAP 
When evaluating interactive systems the first concept that 
comes to mind is usability. There are several common 
measures of usability such as time to complete a standard 
task and time to reach a certain level of proficiency. 
Usability measures have driven a great deal of good 
research in the CHI community. 

Many usability experiments are built on three key 
assumptions. The first is “walk up and use.” This assumes 
that all potential users have minimal training. This is a great 
goal for home appliances and for software tools used by 
many people. This goal also works if there is a large pool of 
potential users with shared expertise, such as secretaries or 
chemists. The assumption is that anyone with the shared 
expertise should be able to walk up and use the system. 
This does not work so well for problem domains that 
require substantial specialized expertise. 

The second is the standardized task assumption. To make 
valid comparisons between systems one must have a task 
that is reasonably similar between the two systems and does 
not have many confounding complexities. The task of 
entering a string of text is fairly standard across any set of 
text entry techniques. There are not many ways to approach 
the task. A task of painting a picture or designing a circuit 
is not a good task for a usability experiment. There are too 
many variables in the task to make valid comparisons. 

  



There are also too many variations in the potential user 
population. A task that is suitable for a usability experiment 
must have low inherent variability so that any variance can 
be assigned to the differing techniques being tested not to 
variations in approach to the task or user expertise. 

The third assumption is scale of the problem. The 
economics of usability testing are such that it must be 
possible to complete any test in 1-2 hours. More extensive 
testing may allow multiple sessions over many weeks but 
any practical experiment cannot afford thousands or tens of 
thousands of experiment hours. A test using 10 
programmers over 6 months would incur at least $300,000 
in user subject compensation for just that one test. The cost 
is high and the statistical significance very low. 

Usability testing is attractive because it can produce a 
statistically valid, clearly explained, easily compared result. 
However, toolkit and UI architecture work rarely meets any 
of the three assumptions of usability testing.  

Any UI toolkit that addresses substantive problems will 
require expertise in using the toolkit. By definition any new 
toolkit will have no population that possesses that expertise. 
Any comparison between a new toolkit and an existing 
toolkit will be confounded by familiarity with the existing 
toolkit and the need for expertise in using the new one. The 
only way to eliminate this confound is to find a population 
that is equally ignorant of both systems. This produces 
comparison results that are not representative of the 
intended populations of either tool.  

The standardized task assumption is also violated in 
systems architecture research. Any problem that requires a 
system architecture or a toolkit in its solution is by nature 
complex. UI applications are known to be complex with 
many possible paths to a solution. Meaningful comparisons 
between two tools for a realistically complex problem are 
confounded in so many ways as to make statistical 
comparisons more fantasy than fact.  

The task scale assumption is also violated by UI systems 
work. Building a significant application using two different 
tools, even if valid comparisons were possible, would be 
very costly. Performing many iterations on a toolkit 
solution using this evaluation technique would be out of the 
question. 

The usability trap lies in how we respond to nature of 
usability measurement for systems architectures and 
toolkits. There are those who respond with “If it can’t be 
measured it is not research.” This reduces research to the 
study of the trivially measurable. There is a slightly 
different response which is “Focus on the measurable it is 
easier to publish.” This limits our power to effect 
significant change. A much more interesting response 
would be “If not usability then how do we evaluate 
systems?” This is the topic of this paper. 

EVALUATING EFFECTIVENESS OF SYSTEMS AND 
TOOLS 
To find ways to evaluate systems and tools we must revisit 
the claims that are made. Our list of advantages presented 
for toolkits and systems provides us a framework of 
possible claims. Given a set of possible claims we can then 
outline ways to demonstrate each of them.  

Importance 
Before all other claims a system or toolkit must 
demonstrate importance. It must be shown that the problem 
addressed by the tool is of interest to a large population and 
that the tool will make a substantive difference. Statistical 
analysis of data is an important safeguard in quantitative 
research. However, if a tool requires careful statistical 
analysis to prove its value, the innovation is frequently not 
important enough to make a difference.  

Tools are invariably associated with expertise gained over 
time. People will not discard a familiar tool and its 
associated expertise for a 1% improvement. In most cases at 
least a 100% improvement is required for someone to 
change tools. Without establishing the importance of the 
problem and its proposed solution, nothing else matters. 

Problem not previously solved 
This is one of the more compelling claims for a tool. This 
claim says that there is a significant population P that has 
an important problem X that has no current solution. It is a 
powerful claim to demonstrate that X can be solved 
effectively with a new tool. Usability testing is irrelevant 
when comparing what can be done against what cannot. 

Such a claim is seriously weakened if there is only a single 
problem X. What has been created is not a design tool but 
an application. That application may be important to the 
population P, in which case it may be more appropriately 
published in the literature of population P. This claim is 
strengthened if population P is very, very large (i.e. 
everyone who can read). The larger and more diverse 
population P is, the stronger the claim to the importance of 
a solution. The World Wide Web could make the claim that 
previously it was impossible for non-programmers to 
interconnect many disparate information resources. 

Generality 
The new solution claim is much stronger if there are several 
populations Pi that each have problems Xi that do not have 
effective solutions with existing technology. If the new tool 
can solve all of Xi then a claim for a general tool is quite 
strong. The generality of the new solution claim is 
strengthened as the populations Pi are increasingly diverse 
from each other.  

The problem with this claim is that proving solutions for all 
Xi is not possible. In fact the more general the tool the less 
likely one can demonstrate all of the possible solutions for 
which the tool is useful. The best proof of a generality 
claim is the diversity of the Xi for which a solution is 

  



demonstrated. If one has used the tool to solve three diverse 
problems then one can argue that the tool solves most of the 
problems lying in the space between the demonstrated 
solutions. The greater the diversity and the larger the 
number of demonstrated solutions, the stronger the claim. 

Reduce solution viscosity 
One of the important attributes of good tools is that they 
foster good design by reducing the effort required to iterate 
on many possible solutions. The more cumbersome the tool, 
the greater the viscosity in the design process with fewer 
and less diverse alternatives being explored. There are at 
least three ways in which a tool can reduce solution 
viscosity: flexibility, expressive leverage and expressive 
match. 

Flexibility 
A UI tool is flexible if it is possible to make rapid design 
changes that then can be evaluated by users. This has been 
the claim of interpreted programming languages. By 
eliminating the compile step, it is faster to try solutions. By 
evaluating code created at run-time more flexible solutions 
are possible. The flexibility claim is relatively easy to 
support. Define some interesting and diverse set of possible 
design changes and show that such changes take 
significantly less effort in the new tool relative to the 
competition.  

Expressive Leverage 
Expressive leverage is where a designer can accomplish 
more by expressing less. The dominant cost of any design 
processes is the making, expression and evaluation of 
choices. Expressive leverage is achieved when a tool 
reduces the total number of choices that a designer must 
make to express a desired solution. There are several ways 
this might be done. 

Eliminating repetitive choices is an easy technique for 
achieving leverage. The simplest mechanism is reuse. The 
claim is that a large class of problem solutions include the 
expression of choice Y, yet Y is the same across all of these 
solutions. A tool that encapsulates Y and thus eliminates 
repetition is more expressive. One must show that every 
solution in the class of solutions includes Y and that every 
instance of Y is similar or show that the differences are 
easily parameterized.  

There are pitfalls to the “generalize and reuse” strategy for 
expressive leverage. In many cases the manipulation of the 
parameters is more complex than redoing a custom instance 
of Y. This comes when there is more variation in Y than 
was originally anticipated. This also comes when one 
generalizes too far.  

A good example of this generalization fallacy is the Table 
widget. At first glance it has rows, columns and cells. 
Columns have headers and cells contain text. It is relatively 
easy to write such a widget and its interface to the data for 
the model is quite straightforward. The temptation, 

however, is to add fonts, colors, special layout rules, 
arbitrary data types for the cells, icons for the columns and 
specialized cell editors with four or five different ways of 
embedding those editors into the cells/table layout. 
Suddenly the correct specification of the parameters to the 
Table widget is more complex and less predictable than 
implementing it from scratch. A generalize and reuse 
strategy must demonstrate that there has been a clear 
reduction in the number of choices that a designer must 
make and that the implications of those choices are clear to 
the designer. 

A second means for reducing the required number of design 
choices comes from observing that many choices are not 
independent but are almost always implied by other 
choices. Having made choices A, B and C, then design 
choices U, V and W are determined. We get our expressive 
leverage by automatically computing U, V and W rather 
than requiring the designer to express them. An example 
would be the automatic calculation of complimentary colors 
once a background color is selected. A variation is that 
default values U, V and W are computed and then only 
changed when necessary. 

A third means for achieving expressive leverage comes 
from the progress of technology. For example the GIGO 
event handling system [3] was widely acclaimed in its time 
because its small memory footprint and event dispatch 
mechanism that could be accomplished in less than 10 
machine instructions. For years various event dispatch 
mechanisms were proposed to optimize the interactive loop. 
This need for optimal event dispatch imposed various 
design choices on programmers to achieve the desired 
speed. When 500 KHz processors became 3GHz processors 
these design choices became irrelevant. Eliminating such 
choices and simplifying what a designer must do becomes 
possible as more memory, processor and communications 
power becomes available. 

Claims of increased expressive leverage may often be 
unjustly discounted. Most of the leverage comes from some 
insight about the way in which systems have been used or 
developed. Once the insight is exposed, the implications are 
obvious. It is very tempting for reviewers to site the 
obvious nature of the implication and thus discount the 
value of the insight. It is incumbent on the reviewer to 
demonstrate that the insight is either trivial or was already 
known.  

Expressive Match 
Tools for creating new user interfaces can be improved by 
increasing the expressive match of the system. Expressive 
match is an estimate of how close the means for expressing 
design choices are to the problem being solved. For 
example one can express a color in hexadecimal or one can 
pop up a color picker that displays the color space in 
various ways and shows the color currently selected. Both 
are completely accurate means for expressing color, but the 
color picker is a much closer match to the design problem.  

  



Most interface design environments provide a tool for 
placing widgets in a form and dragging them around until 
the resulting layout is visually appealing and readily 
understood. Encoding the coordinates of each widget in 
C++ or a text file will accomplish the same goal, but the 
visual tool is a better expressive match for the problem of 
creating a usable and pleasing layout. 

There are several requirements when making a claim of 
greater expressive match. One must show that the problem 
which the new notation or tool addresses is an important 
one. One must then demonstrate that the new form of 
expression is actually a better match. If the problems are 
small enough one can compare times to create a design. 
This may or may not fall into the usability trap described 
above. Frequently greater expressive match is tied to a 
claim to lower skill barriers.  

Another test for expressive match is a “design flaw 
challenge”. A design that is deficient in some way is 
encoded in the two different forms. Users are each given 
one of the forms of expression and asked to locate and 
remedy the flaw. Time, errors, difficulties and success rates 
can be used to compare two forms of expression. In many 
cases such challenges are trivially obvious. “Match this 
color” can be given in hex or in a color picker. For most 
people the task is virtually impossible in hex and even for 
experienced designers there is a lot of trial and error 
required. Similarly a flaw in the input handling of some 
widget can be posed. Some designers are given state 
diagrams and some are given the equivalent Java/Swing 
code. Each is challenged to find and remedy the flaw.  

Greater expressive match introduces the difficulty of 
integrating multiple forms of representation and their 
associated tools. A long term challenge in the UI 
community has been the integration of various 
representations with program code. Despite years of 
research and dozens of alternative proposals, algorithms 
and data structures are still best represented in a general-
purpose programming language. State machines showed 
real promise as a representation for input, yet they always 
reached expressive limitations that required a transition to 
code and the transition was awkward.  Visual Basic 
addressed this problem by integrating a full interpreted 
programming language into their UI layout tool. The key 
point is that any new form of expression must be 
computationally complete or it must have a clear integration 
mechanism with a programming language. When there are 
many different forms of expression, the tools must show 
how they are integrated effectively with each other. In 
many cases the integration effort swamps the benefits of the 
new tool or notation. 

Empowering new design participants 
The previous set of claims focused on the speed or ease 
with which a user interface could be designed. Tools can 
also make a contribution by introducing new populations to 
the UI design process. Frequently this is done by dealing 

with expressive leverage and expressive match issues, but 
the claims are different. The “new design participants” 
claim is that there is some population who would benefit by 
being more directly involved with the UI design process. It 
has long been claimed that empowering artists will lead to 
better visual designs.  

The first part of the claim must be to describe some 
population of participants and show why they should be 
involved in the process. Secondly one must establish why 
existing tools are not acceptable for this population. This 
may include lack of appropriate training, different norms of 
expression or design goals that are not supported by 
existing tools. Lastly one must demonstrate that the new 
tools are accessible, easier or more effective for this desired 
population.  

The simplest criterion is that the existing tools simply could 
not be used by the target population at all. Demonstrating 
that artists cannot reliably encode colors in hex is an easy 
claim to make. A second claim is that the new tools are 
easier for this population. Here usability tests are possible. 
However, the representation may not scale to full-sized UI 
designs and the usability trap will be reintroduced. There is 
also an importance issue. If there is not a substantial 
improvement in ease or usability to this population or the 
population is only peripherally involved then there just may 
not be much value in the new tool. People will only change 
tools for substantial (2 times or better) improvements. The 
last claim is that the resulting UI designs are “better” when 
the new tools are used by this population. The question of 
defining “better” is problematic. 

Addressing a new problem 
Systems that address problems/techniques not possible in 
existing tools may have a great claim for attention. To be 
significant the new problem must meet the generality claim 
described earlier. 

Power in combination 
Many tools demonstrate their effectiveness by supporting 
combinations of more basic building blocks. There are two 
basic variations of this claim. The first is an inductive claim 
that an infinite set of solutions can be built from primitives 
and their combinations. The second is the N to 1 reduction. 
Both of these approaches are based on clearly defining 
mechanisms for combining pieces of design to create a 
more powerful whole. 

Inductive Combination 
This is the basis for grammars, UI component trees and a 
variety of other innovations. The idea is that there is some 
set of primitive design components and some mechanism 
for combining them into more complex designs. Some 
simple set of string tokens can be combined using non-
terminals and production rules to create an infinite number 
of different programming languages. Simple widgets that 
each perform some interactive task can be combined using 

  



panes, tabs, tables and other visual constructors to create an 
infinitely diverse set of UI designs.  

Making this sort of claim requires that one show that the set 
of primitives is either relatively small or can be easily 
extended. User interface toolkits use both of these 
strategies. There is usually a small set of primitive widgets 
(less than 30) from which many interesting designs can be 
built. In addition, most toolkits provide a mechanism for 
creating new primitives that can be readily integrated into 
the set. The power comes from the means for combining 
these pieces into more complex designs. The induction to 
an infinite set of possibilities comes when any of these 
combinations can be used wherever a primitive solution can 
be used.  

This claim introduces the question of coverage. For 
example, context-free grammars define an infinite set of 
textual languages. However, it can be readily proved that 
they cannot represent all languages. It can also be readily 
shown that combining menus, scroll-bars, labels and text 
boxes into forms can produce an infinite number of UI 
designs. However, many UI designs (painting or drawing 
programs) will not fit this model.  Virtually any 
combination scheme will leave out some design solutions. 
Therefore one must show that the set of designs within the 
system are interesting and that there are mechanisms 
outside the system for addressing issues that are not 
covered. Compilers added symbol tables to context-free 
grammars to make them effective. UI toolkits generally 
provide a means for adding new primitive components to 
provide extensibility. 

Simplifying Interconnection 
There are many situations where components must 
communicate and integrate with each other. This 
interconnectivity is critical to the deployment of new 
technology. A system of N components that must work 
together imposes a serious burden on the N+1 component. 
If every component must implement an interconnection 
with every other component then the N+1 component must 
include N interconnections with other pieces. A good 
interconnection model will reduce the cost of a new 
component from N to 1. With a good interconnection model 
the new component must only implement the standard 
interface. It will then be integrated with all N existing 
components. 

An early example was the use of pipes in UNIX. 
Applications would read from standard-in and write to 
standard-out. Pipes could connect the standard-out of one 
program directly to the standard-in of another, allowing 
applications to be plugged together in any number of useful 
ways without new code.  

A more compelling example is the World Wide Web. When 
one creates a new web browser one automatically inherits 
the value of all of the web sites that have been created. 
When one creates a new web site one inherits the value of 

all of the browsers that have been installed. Adding a new 
browser or a new site incurs only the cost of that site and 
not the cost of creating, connecting or deploying the 
remainder of the needed infrastructure. The power is in the 
connectivity architecture that reduces cost from N (one for 
every related component) to 1.  

To make the interconnection claim, one must show 1) that 
there is an interesting diversity of choices on both sides of 
the connective architecture, 2) that they are all cleanly 
supported by the architecture, and 3) that the space of 
combinations is interesting and non-trivial. 

Ease of Combination 
The fact that architectural components can connect is 
generally not sufficient. It is important that the 
interconnection be simple and straightforward. In most UI 
toolkits a new widget must only implement the redraw() 
and resize() methods to integrate with the rest of the 
system. Additional event-handling methods will provide 
interactivity but these two are sufficient. Many of the 
interconnection complexities are hidden in inherited code. 
The WWW has a similar ease of combination. The HTTP 
protocol that connects browsers to servers is very 
straightforward and easy to learn. My personal counter 
example is SOAP which took the relatively simple HTTP 
and XML techniques and created a very complex model for 
interconnecting with web services. This model is very 
difficult to use without additional layers of code generation 
on top to obscure its complexity. 

Can it scale up? 
An important question that must be asked of every new UI 
system is whether it can scale up to large problems. This 
was the fundamental drawback of state machines for 
describing user interface dialogs. For simple examples like 
dragging a rubber-band line, the state machine dialog was 
very clear and simple. However, for any reasonable 
application the representation acquired hundreds of states 
interconnecting in hundreds of ways that were impossible to 
visualize, present on a screen, or debug. Constraint systems 
have similar problems. They nicely model small local 
relationships yet produce serious debugging challenges 
when hundreds of constraints are all being evaluated 
simultaneously. Any new UI system must either show that 
it can scale up to the size of realistic problems or that such 
scaling is irrelevant because there is an important class of 
smaller problems that the new system addresses. To 
evaluate this criteria one must try the system on a 
reasonably large problem and show that the advantages of 
the new model still hold. 

SUMMARY 
User interface technology, like any other science, moves 
forward based on the ability to evaluate new improvements 
to ensure that progress is being made. However, simple 
metrics can produce simplistic progress that is not 
necessarily meaningful. Complex systems generally do not 

  



yield to simple controlled experimentation. This is mostly 
due to the fact that good systems conquer complexity and 
complexity confounds controlled experimentation. This 
paper shows a variety of alternative standards by which 
complex systems can be compared and evaluated. These 
criteria are not novel but recently have been out of favor. 
We must avoid the trap of only creating what a usability 
test can measure. 
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