Animation

Why animation?

- Realism and fluidity of interaction
 - Open/Close
 - Spring-back constraints
- Transitions from collaborators
 - System
 - Other people
- PowerPoint
 - Actual Animation effects

Basic linear transform

- Setup, V0 at T0 and V1 at T1
- Linear transform

– V=a*T+b

- Derive the equation using V0,T0,V1,T1
- Equation
 - a=(V0-V1)/(V0-T1)
 - b=V0-T0(V0-V1)/(T0-T1)
- Why use it?
 - Keyframe animation

Animation Schedule

- Animation Record
 - Value reference (path from root)
 - V0, V1, T0, T1
- At some time T for each rec in schedule
 - If (rec.T1<T)
 - V = V1, discard rec
 - Else if (rec.T0<T)
 - V = V(T)

(a*T+b)

- Increment T by 1/30
 - If (T<realTime)
 - T=realTime
 - Else if (T>realTime)
 - Wait(realTime-T)

Expressing Animation

• Consider a presentation list in SPARK

Expressing Animation

• Keynote on iPad – Two different slides + time

Expressing Animation

- Keynote implementation
 - Difference on the two presentation trees
 - Diff(P1, P2) => Change list
 - Generate an animation schedule for each change
 - Number change
 - Creation
 - Deletion
 - Movement in a list?

Alternate V(T) functions

- Distance time curve
- Cubic slow in slow out
 s= -2t³+3t² (0-1)
- Derive V(T)
 - V=s(V1-V0)+V0
 - t=(T-T0)/(T1-T0)
 - Modify for slow in only
 - Modify for slow out only

Animating Transformations

Simple Slow in

• $V_{i+1} = V_i (1-R) + V1(R)$

- R varies between 0 and 1 and controls the rate

Movement Path

Movement Path

