
Persistent data 
Interaction is fundamentally about changing information. In most cases 

that information is ultimately intended to be shared in some way. Small 

computer games may not share information but virtually every other 

interaction must. Persistence is the process of converting information 

into a form where it can persist outside the life of the application that is 

manipulating it. We want our information to persist across time and 

among people.  

Issues 
Before launching into various architectural solutions we first need an 

overview of the issues that must be addressed by our persistence 

architecture. These are: 

 Pointers and files 

 Create-mostly or read-mostly 

 Bandwidth, latency and failure 

 Format changes over time 

Pointers and files 

Most interactive data live in memory as data structures of various 

forms. In this book we have focused on trees for reasons that will serve 

us well in this chapter. Most data structures are based on pointers. 

Pointers are fundamentally memory addresses that do not have 

meaning outside of a particular running process. We will need 

representations that preserve the structure of the data while discarding 

the pointers.  

Create-mostly to read-mostly 

There is a continuum of interactive programs ranging from create-

mostly through read-mostly. In the early days of the Macintosh and the 

IBM PC interactive applications were create-mostly. This includes word 

processors, spreadsheets, Powerpoint, computer aided design and 

many others. The purpose of these applications was to allow people to 



create information that they could share with other people for a variety 

of purposes.  

With the advent of the Internet and the WWW has come a proliferation 

of read-mostly applications. This is where most of the interactive 

behavior is to search, retrieve, browse and otherwise experience 

information that already exists. Google is almost read-only. Except for 

entering search terms the entire interactive experience is browsing. 

There is no persistence problem at all. Amazon is read-mostly. Most of 

the interaction is searching the catalog of products with a limited 

amount of interaction to complete a purchase or manage your account.  

Creation to reading is a range of applications rather than two 

categories. Many applications are mixtures of both. A word processing 

program (create) might be embedded in a document repository (read). 

There are many variations. This range of characteristics is helpful when 

we think about data persistence.  

In a create-mostly application, the size of the information is limited by 

the human capacity to create that information. If someone could 

steadily type 100 words per minute for 2,000 hours per year (full time 

40 hrs/week) they would generate 60 MB of data. Even if this were all 

one file it would be modest by today’s computer memories. Of course 

nobody can sustain that kind of creative output. In reality individuals 

generate less than 1 MB per year (video excluded). Even if there are 10 

– 100 people working on the same piece of work all year that is still less 

than 100 MB. The persistent data for create-mostly tasks tends to be 

relatively small and self-contained.  

In a read-mostly application the data involved is huge (all of Google 

search, the Netflix video catalog, web browsing). There is no way that 

an interactive user can view more than a fraction at a time and certainly 

only modify a tiny fraction. This means that our interactive applications 

are mostly retrieving data and assuming that the data will not change 

during the lifetime of the interaction.  



For create-mostly applications the persistence model is generally a set 

of self-contained documents or files. Each persists on its own and can be 

moved and shared as a single entity. Interaction generally occurs in 

RAM with persistence only coming into play when the file is saved or 

loaded. This model is breaking down somewhat with more and more 

applications continuously updating the persistent store rather than 

waiting for a “save” command. For read-mostly the persistence model is 

a database, generally accessed remotely over the internet with the 

interaction involving only a small portion at a time. Much of the 

interaction is for formulating search queries. Updating the store is based 

on a series of relatively small transactions. As we move forward more 

and more applications will occupy the middle ground between the two 

poles. Mobile devices with their limited interaction and memory 

capacities are driving towards this mixed approach. 

Bandwidth, latency and failure 

Applications which cannot interact over the internet are declining 

rapidly. Interacting “in the cloud” will be a key part of user interface 

architecture. With that power comes the issues of bandwidth, latency 

and failure. When one makes a request of a local hard disk there is high 

assurance that the information will be retrieved within the span of user 

patience and with an extremely high reliability. For a disk read to not 

work would be considered a system failure. These characteristics are 

not shared by the internet. When requesting information over a 

network, issues of latency and bandwidth will make exceeding user 

patience quite common. There are also periodic failures when the 

information is not retrieved. The latency and bandwidth issues are 

resolved by making information retrieval asynchronous with the user 

interface. The user interface cannot come to a halt while waiting for 

network retrieval. We need to modify our interactive architecture to 

account for this.  

Failure to retrieve is a bigger challenge. This can happen for several 

reasons and can cause problems throughout. Our interactive application 

itself may fail. If our application fails it will just stop communicating with 



the server. The server needs to continue in a robust manner despite our 

failures. The network connection between our application and the 

server may fail. This leaves both sides with an empty silence that must 

be dealt with. We do not always get an error. Sometimes it is just 

silence. Sometimes the server will fail leaving our application without a 

data resource and sometimes a peer version of the application may fail. 

We need to cleanly account for all of these issues in our persistence 

architecture.  

Lastly there is the need to minimize network round trips in our relations 

to the server. If on a given input event, we make a number of changes 

to our persistent model, we do not want a change message to be sent 

for every little change. Each such message breaks down into several 

synchronous messages across the internet. This is particularly true if we 

are using connectionless protocols like HTTP and error correcting 

protocols such as TCP. Numerous round trips with blocking behavior at 

each round trip will bring an interactive application to its knees. We 

need to batch up our changes so they can be transmitted in larger 

messages. The length of the message is less important than the number 

of messages in getting good interactive behavior. 

Schema change 

A schema is a definition of the structure of the persistent data. The 

word comes from the database community. The problem is that 

interactive applications change over time as users request new features. 

These changes must be reflected in the structure of the persistent data. 

The challenge comes when our application changes to accept data in a 

new form and our stored data has not changed. Such changes are 

essential to keep our customers buying new versions of our software. In 

our persistent data architecture, we must account for these changes. 

Representation 
Before we can create persistent data, we need a representation. We will 

consider three strategies here: serialization, relational tuples and 

key/value stores. 



Serialization 

In create-mostly applications, the entire work product is considered to 

be small enough to fit in RAM. This leads to the load/save model of 

persistence based on files. When a new work product is created an 

empty data structure is created in memory as the model of the user 

interface. As the user interacts this model is changed and generally 

grows as new information is added.  

At appropriate times this model is saved to a file. The internal data 

structure with all of its pointers must be “serialized” into a stream of 

bytes that can be saved in the file system. The term serialization comes 

from the conversion of a graph-like data structure with pointers going in 

all directions into a sequential set of data with no pointers at all.  

Historically a program would have a saveFile() function and a loadFile() 

function that would perform the serialization in whatever form seemed 

appropriate. Some languages such as Java provided automatic 

serialization features. Languages that support reflection have the ability 

to identify all of the fields in an object and save those fields. If the 

object has pointers, then it can follow the pointers and save those 

objects also. If one keeps track of which pointers are already saved, a 

pointer can be represented as a reference back to the first saving of that 

object.  

One of the challenges of reflection-based serialization in strongly typed 

languages such as Java is schema change. If the type of an object is 

changed, Java serialization will no longer read older files. This becomes 

quite brittle, particularly during development when many things are 

changing. More dynamic data structures such as JavaScript can pretty 

much store anything. Data that is no longer used in a new incarnation 

can be safely ignored.  

Serialization can also be binary or text. Binary is obviously small in space 

and faster in time. However, not all computers share the same binary 

representations. Language-based serialization overcomes this by 



adopting standard representations regardless of the hardware platform 

and then creates hardware-specific conversions.  

On mobile devices the save/load model is being replaced by the 

continuous update approach. Whenever a change is made, it is 

automatically written out to the persistent representation. This makes 

the standard serialization approach less appealing. 

Relational Tuples 

Relational databases have long been a staple for large data stores. Their 

properties for indexing, flexible storage and access have been known for 

a long time. In this approach data is broken into tables of tuples. All 

tuples in the same table have the same set of fields. Tuples can 

reference other tuples using shared information. The standard 

operation for merging tuples from multiple tables is the Join operation.  

The advantage of the relational model is that it has the least 

commitment to the actual use of the data. Data for a particular need is 

pulled together as necessary using the Join, Select, Project operations. 

When the desired data is viewed as a list of things, the resulting table 

view fits quite nicely. However, if the desired data is interrelated or tree 

structured in some way, the relational representation starts to break 

down. In the relational model the data is represented in a form that is 

suitable for long-lived databases but not necessarily for interactive 

needs. 

Key/Value Store Model 

A common representation in network-connected interactive application 

is the key/value store. It is then quite common for the value to be a 

tree. This structure was first introduced in chapter 1. This form can 

easily represent the relational tuple model where each key corresponds 

to a unique tuple and its value has the value of all that tuple’s fields. In 

this representation the value can grow to the size of small serialized 

files. The representation can easily move back and forth.  



There are two big advantages to the key value store: 1) it is easy to 

implement, manage and use, 2) it hides the data base structure while 

providing data in a form that is easy for the UI code to consume. The 

structure of the values is targeted towards simplifying the user interface 

code rather than just exposing the database structure. This separation 

also allows us to make major changes to the database without harming 

the user interface code. Throughout the rest of this chapter we will 

assume the use of the key/value store. 

We still need a representation for the values in our store. Early on, XML 

was seen as a representation for such data values. That is where the 

AJAX (Asynchronous JavaScript and XML) architecture came to be. The 

problem is that XML stands for eXtensible Markup Language. Its 

heritage was in markup language for documents. The standards process 

started adding layers of constraint and type declaration onto the 

markup to constrain, declare and standardize what was there. In 

network-based inter action this grew into SOAP (Simple Object Access 

Protocol) which with its layers of specification, and discovery 

mechanisms is anything but simple. Systems have drifted towards much 

simpler representations such as JSON (JavaScript Object Notation). In 

JSON-like representations there is a clear, simple relationship between 

the textual representation and the data structure that it represents.  

With smaller objects rather than entire files, the size of the 

representation is no longer as important. Thus, most data 

representations are text as in JSON or XML. The size of a network packet 

is not nearly as important to overall speed as the number of round trips. 

If necessary, text can be compressed and reach binary sizes or better. A 

huge advantage of a textual representation is in debugging. It is much 

easier to see what was sent when hunting down problems. If size in the 

database is a problem, then the database can choose its own 

representation. Our interactive application only cares about the 

representation used for communication. 



Asynchrony 
When so much of our persistent data is on the other side of a 

comparatively slow and error prone network, the issues of asynchrony 

manifest themselves in the user interface. There are two issues that are 

important to the user interface: 1) the user interface must not block 

while waiting for the network and 2) we always need to present the 

user with our best understanding of the state of the application. 

We should never deprive the user of control of the program while 

waiting for the network. Too many interactive applications ignore these 

problems and leave the user stuck and powerless. This leads to very 

cranky users. We also must make clear what is going on. If there is 

information that has not yet arrived, that status must be visible. Taking 

an action and doing nothing visually leaves the user assuming that they 

did something wrong that they must somehow correct. If information is 

still loading or otherwise incomplete, that should be obvious to the 

user. 

There are four basic mechanisms that we use in interactive applications 

to deal with asynchrony. They are: caching, promises, change 

notification and leases. Caching makes the UI more responsive by 

storing local copies of the data so that we do not need a network round-

trip every time we want to update the presentation. Later in this 

chapter we will discuss how to do this so the results are reliable. When 

we make a request for an asynchronous data operation, there are three 

things that can happen: 1) the request eventually succeeds, 2) there is 

an error and the request fails, 3) after a reasonably period of time the 

request stops because there has been no response. Promises are a 

mechanism for dealing with these three outcomes. A promises are 

fulfilled or not, the local data must be updated and then change 

notification brings the presentation in line with whatever has happened 

to the model. To protect itself against unresponsive applications the 

server may only “lease” data for a fixed period of item. When the 

“lease” expires the data is no longer good and fresh data must be 

obtained from the server. 



In discussing how our application should work with a persistent data 

model that functions asynchronously, there are three basic operations 

that are performed: 1) creating new objects, 2) deleting or changing 

existing objects, and 3) retrieving objects from the store. Each of these 

relates to the application and the data store in different ways. 

Object Cache 
If our application is going to have an object store that is asynchronously 

accessed, we will need a cache for the objects that we have received. 

Such a cache will have the following five  operations: 

 Get - retrieve an object given the key for that object. 

 Create – create a new object and obtain a key for it. 

 Change/Delete – modify an existing object. 

 Find – search for one or more objects. 

 Save – This will forward all changes known to the cache on to 

the data store. 

We can define the function of our cache in terms of these four 

operations. These will also be sufficient to manage most of our 

asynchrony needs. It is very important that all accesses to our data store 

go through this cache. If we start to work outside of the cache to access 

the store directly, there will be problems. The cache mechanism also 

allows us to batch up changes and send them as a group to reduce 

network traffic.  

Basic cache structure 

Our cache is based on three hash tables and a counter, as shown in 

figure 17-1. 



class DataStore 

{ int objCounter=0; 

 Hashtable recent=new Hashtable(); 

 Hashtable prev = new Hashtable(); 

 Hashtable dirty = new Hashtable(); 

} 

17-1 – Data Store methods 

An important part of our cache is that it only hold a limited number of 

items so that we do not overflow resources on our local device. For this 

we have a MAX_OBJECTS constant that establishes that limit. The idea 

of this cache is that recent will hold pointers to all objects that have 

been recently accessed. The prev table will hold objects that have been 

accessed, but not recently but for which we still have cached copies. 

The dirty table contains references to all objects that have changed 

since the last time the cache sent changes to the remote data store. 

Get 

The get() method takes a key and returns an object associated with that 

key. In strongly typed languages such as Java or C# there may be 

multiple get() methods, one for each type of object in the store. Such 

languages may also have get() return an Object which is the superclass 

of everything and then the application can sort out what object it has. 

Dynamically typed languages, such as JavaScript or Python, would have 

one get() method on the store. The code for get() is shown in figure 17-

2. 



Object get(String key) 

{ Object rslt = recent.get(key); 

 if (rslt == null) 

 { rslt = prev.get(key); 

  if (rslt == null ) 

  { rslt = a default object that indicates that 

    the desired object is still loading from 

    the store. 

   Launch an asynchronous request for the object 

  } 

  recent.put(key,rslt); 

  objCounter++; 

  if (objCounter>MAX_OBJECTS) 

  { prev=recent; 

   recent=new Hashtable(); 

   objCounter=0; 

  } 

 } 

 return rslt; 

} 

17-2 – Getting objects from the cache 

This method is given the key for the object to be retrieved. It first looks 

in the recent table and returns the object if it is found. If there has been 

no recent retrieval of the object, it looks in the prev table to see if the 

object is there. If the object is in prev then the object is entered into 

recent and the objCounter is incremented. This is a cheap mechanism 

for identifying recently used objects.  

If the desired key is not in either of the two hash tables, then an 

asynchronous request is made to retrieve the object from the remote 

data store. The problem is that we do not want our user interface to 

block waiting for this request. The solution is to generate a default 

object that indicates that the real object has not yet arrived. This default 

object can be returned to the user interface and interaction can 

proceed. In the case of our employee, we may set all fields to null and 

put “waiting to load” in place of the name. This clearly indicates to the 

user that this data has not arrived. Alternatively we may put a flag on 

the object to indicate its temporary nature and then the UI can display 

that appropriately.  



The UI code should place a listener (chapter 7) on the result of the get() 

so that it is notified of any changes. If the result was a default object, 

eventually the asynchronous request will complete, the object in the 

cache is updated and the listeners are notified. When the notification 

occurs, the UI can update its presentation to reflect the actual data now 

in the object. Our standard presentation listener mechanism will handle 

the asynchronous arrival of data from the store. 

This process of promoting objects into the recent table cannot go on 

forever. We need to limit the size of the table. As seen in figure 17-2, 

when the number of objects exceeds MAX_OBJECTS, the recent table is 

moved to prev. The prev table is discarded and its objects are released 

to garbage collection. The recent table is then initialized to a fresh 

empty table. Initially the algorithm will retrieve objects from prev, but 

they will be steadily promoted into recent. Objects that are no longer 

used will stay in prev and eventually be discarded. This is not a strict 

least-recently-used cache discard algorithm but it is close enough and 

very simple to implement.  

Create 

When creating a new object there are really only three things that we 

need: the type of object to be created, a unique key for the object and a 

default initial value. The data store needs to know that we have created 

an object but there is nothing in the data store for that object. Most 

object data stores have multiple types of objects in the store. Our create 

method needs to know what type of object is to be created. In 

dynamically typed languages we can pass a string or integer parameter 

to indicate the type. In strongly typed languages we can create a 

separate create() method for each type of object to be created.  

The key that identifies the object is the most important. We want a key 

that is unique across all uses of the data store. We also would not like 

the UI to wait on the data store before continuing. The answer to this is 

to prefetch a set of keys that are known to be unique. Suppose, for 

example that when a connection is first made with a data store, it 

returns 10 keys that it guarantees to be unique. When the user creates 



a new object the application takes one of those keys and assigns it to 

the new object. The object now has a unique key and there was no need 

to wait for the data store. The data store can be asynchronously notified 

that a new object was created under that key, but the UI can continue 

on without waiting. If the pool of potential keys falls below a threshold 

(5 for example) the application can request new keys from the data 

store. This guarantees that there are always plenty on hand so the 

application is never waiting for new keys. 

The data store on the server must remember which keys it has handed 

out so that they are not inadvertently used by other instances of the 

application. The problem here is that applications may terminate while 

holding keys that they have not used. If the server leases the keys it has 

issued then eventually the lease will expire and the server can release 

those keys even though the application has not released them or used 

them. 

If the key space is large, it is easy to create unique keys. Suppose we use 

a 10 character key that is randomly generated. If we include letters and 

numbers there are 3610 possible keys. If our random key generator is 

any good the likelihood of generating duplicate keys is extremely low. 

To be certain, the data store can generate a key and then perform a 

single key search (usually very fast). If the search fails, the key is unique. 

If the search succeeds, try again. It is virtually impossible for this to fail 

more than 2 times. Thus it is very easy for a server to quickly generate a 

batch of unique keys. The server must then remember the keys it 

generated until they are either used or their lease expires. 

Delete/Change 

Data objects change when some value is modified or deleted. For the 

purposes of this discussion changes and deletions are treated the same. 

The employee in figure 17-3 is an example of what needs to happen. 



Employee{ key:”E1887”, lastName:”Jones”,  

 firstName:”Andrew”, 

 contact:{ 

  phones:[ “803-123-4567”, “991-543-1234” ], 

  addresses: [ 

   {  street:”1014 Flingerhammer Dr.”, 

    city:”Sholo”, state:”AK” 

   }, 

   { street:”742 Shootoss Av.”, 

    city:”Limpopo”, state:”WA” 

   } 

  ] 

 } 

} 

17-3 – Employee data 

In figure 17-3 the key is shown as part of the employee record for 

convenience. It can just as easily be a separate part of the data store. 

Normally we would also want much longer keys because it is easier to 

create unique ones. Suppose our user has interactively deleted the 

second address (in Limpopo, WA). If we have created our models using 

the principles in chapter 2, the method that performed the deletion on 

the array of addresses can notify the addresses object of the change, 

which in turn can notify the contact object, which in turn can notify the 

Employee object, which is the root.  

Using the principles in chapter 7 the data store cache can have posted 

itself as a listener on the employee object. Thus the cache is notified of 

the change and can respond accordingly. The presentation’s listeners 

are also notified and the display is updated. Alternatively root-level 

objects can always notify the cache of their changes so that the 

overhead of the listeners is not required. It is extremely rare that a root 

level model object will not want to notify the cache.  

The notification of the cache of the changes can be handled in two 

ways. If the objects are relatively small, as in figure 17-3, we simply add 

the object to the dirty table so that the cache will get it updated when 

appropriate. The object has changed already so the presentation will 

reflect that change. If objects are relatively large, we can compute a 

change record, as shown in figure 17-4. 



Delete{ path:[“contact”,”addresses”,1] } 

 

17-4 – Change record for modifying 17-1 

This change record can be sent to the cache and such changes can be 

collected into a batch to be set to the server all at one time. The cached 

object is still changed so the presentation is up-to-date. The 

asynchronous sending of changes can happen without impacting the 

user interface.  

In some cases the change will fail. For example, the user may not have 

sufficient rights to delete an employee’s address. In such case, the data 

store may reject the change. If that happens, the data store should 

resend its version of the object in question along with the rejection. The 

cached object is changed and the listeners are notified of the new 

object value. The presentation’s listeners will restore the object to the 

state approved by the data store. The accompanying error can also be 

shared with the user. 

So in response to a change in a persistent object the steps are: 

 Change the cached object and notify that object’s listeners, 

including the presentation. 

 Mark the cached object or its change records to be sent to the 

server. (add object to the dirty table) 

 In case of rejection, set the cache to the value received from the 

server and notify all presentation listeners of the change. 

Search 

It is very common to need to search for various kinds of objects in your 

data store. There are a wide variety of query languages in which such 

searches can be expressed. Google uses the simple list of words and 

returns the best matches. SQL is a sophisticated language for querying 

relational databases. There are other languages for querying JSON or 

HTML/XML markup data bases. For this discussion the query language 

does not matter. You will use the one that is best for your application 

and object store.  



The issue that is special about search it that the results are almost 

always asynchronous, frequently do not arrive all at once and there are 

frequently too many to download into the application at one time. A 

further difficulty is the ordering of the results. The question is whether 

the object store should order the results or the application. 

The first step is to treat each query as a special kind of object. They have 

a very short lifetime, but treating them as an object will simplify the 

relationship to the cache and to your presentation. In order to send a 

query you must create a new query object for which you need a key. 

This can be handled as described in the Create section above. The 

object is loaded with the query and put into the cache on the dirty list 

so that it will get sent with the next batch of requests. Listeners should 

also be attached and notified. This will allow the presentation to show 

the pending nature of the results. As results are received they will come 

with the key attached so that the results can be loaded into the correct 

query object and the listeners notified. As new requests related to this 

query are sent to the store, the key will identify the query to which the 

request belongs. Data stores frequently construct query objects that 

they retain as further results are requested and this key makes the 

connection possible for the data store. It is frequently helpful to provide 

a discard() method on query objects so that the server can be notified 

and free up its own resources. 

Results of the query will be received asynchronously by your cache 

handler. The query object in the cache will be updated and listeners 

notified. Even if results come in piecemeal, the repeated listener 

notification will keep the presentation up-to-date with what has been 

received so far. 

The results should be handled as an array or list of other objects. 

Because the array may be large and its results arriving asynchronously 

this array needs a special implementation. There generally three cases 

for such handling that depend on the number of expected results. If 

your array implementation can handle all three, the presentation need 

not know and can just present and interact with what is available 



already. Roughly we can thing of result sizes in tens, thousands and 

gazillions. In most cases this distinction can be drawn by the data store 

rather than the interactive application. The result array is added to the 

query object when it is created and then filled as results are returned. 

The result array is an array object keys. The application can then pull 

what it wants from the objects. And the cache and data store can 

handle object access through the normal mechanism. 

Tens of results 

If the result only has a few things, such as the classes that a student is 

taking, the children in a family or the pending orders in your Amazon 

account. In the returned result contains the entire array of keys and the 

objects referenced by those keys are also returned. Because of the small 

size of the result the array and the objects are easily batched into a 

single message. This preloads the cache with the objects so that the 

presentation can immediately show everything. It is also appropriate for 

the interactive application to do the ordering rather than the data 

server because all of the object information is present for the 

application to work with. 

Hundreds to thousands of results 

In this case there is too much data to appear on the screen at once and 

sending all of the objects along with the results will be way too large. 

The simplest approach is to send a results array with only the object 

keys. The presentation can then request the objects that it intends to 

show and then respond to notifications as those object contents arrive. 

A thousand objects with 20 byte keys (very large) would only take about 

20K in a message. This is easily stored in RAM even on phones. The fact 

that it contains keys rather than objects lets the cache handle the rest of 

the details. If you are only looking at 20 objects at a time, the others will 

either not yet be retrieved or will be candidates for removal from the 

cache.  

If the user scrolls back and forth a lot, objects that are viewed will stay 

in the cache and the user interface will be very responsive. When the 

presentation requests an object that is not in the cache it should receive 



an object that shows the pending status and to which listeners can be 

attached for notification when the results arrive. 

Ordering of the results should be handled by the server rather than the 

application. Without all of the objects, the application is not capable of 

doing the sort. Downloading all of the objects just to do an application-

side sort is not a good use of resources. 

In many cases with thousands of results the data store will order them 

by likely interest. We see this in Facebook posts, Amazon product 

searches, Google results and many others. In such uses, the user 

frequently does not look beyond the first 10-20 results. In such 

situations the server can send the full array of keys along with the first 

10-20 objects. This preloads the cache with the objects for the first 

view. The user instantly sees that first screen full of objects without 20 

independent object requests or additional waiting. If the user scrolls or 

in some other way moves beyond that first group the object requests 

will bring in the new objects.  

In the case where viewers are looking at objects from the beginning of 

the list forward, we can perform an optimization inside of our array. 

Whenever some part of the application accesses the object at location 

N in the array, we check to see if the objects for locations N through N-P 

are in the cache, if not the array requests them. P can be thought of as a 

page or prefetch constant. As the user works down through the list of 

results the array is prefetching objects that are not yet needed but 

might be. If P is too large then unnecessary numbers of objects are 

retrieved. If P is too small then objects may not have arrived when the 

presentation needs them and the user must wait. It is easy to adjust P 

based on actual usage.  

Note that requests for objects go into the pending or dirty list 

maintained by the cache and are not actually issued until a save 

operation (discussed later). This allows multiple requests for the same 

object and requests for many objects to all be batched together in a 

single message.  



Gazillions of Results 

In many cases, such as Google searches or some product catalogs the 

number of results is huge and even the results array is too large to be 

shipped all at once. In some situations the length of the results array 

may not be known either because it is too costly to count or because 

the application wants to appear infinite. Facebook, for example, does 

not want you to see the end of a posting list. As long as you want to 

keep looking, they want to keep providing you information.  

In this case the results array may have a length or it may not. Many 

Google searches will tell you how many results there are. (the length of 

the results array) For many searches it only gives you an estimate of its 

length. As discussed earlier, Facebook and Twitter want their feeds to 

appear infinite.  

For such very large arrays the first results array has a length that 

matches the first batch of keys and then we allow the length to be 

updated as new objects are retrieved. Such very, very large lists are 

always ordered by user interest and their full extent is rarely retrieved 

interactively. For such large results we can use the prefetching 

technique described for thousands of results. We augment this slightly. 

If the results array is asked for the key at location N and the length of 

array is L and L>N-PL (where PL is our prefetch constant for length) then 

in addition to prefetching any objects, we also request an update on the 

results array length. PL is generally much larger than P. An increase in 

the results array will also prefetch the object keys that should fill those 

new slots in the array.  

If application memory is tight or we expect our results lists to be long 

we can also implement our array so that it maintains a fixed number of 

object keys and just moves the starting index of the array. Thus when 

we ask for object keys to be added to the end, we discard object keys 

from the start of the array. This means that as we move close to that 

start index we will need to request the keys that we discarded earlier. 

The advantage of this is that memory demands in the application are 

fixed and user activity cannot cause memory overflow.  



Save 

In the preceding operations on the cache and objects in the cache all 

changes and requests were held in a “dirty” list or an update list. This is 

to prevent interactive behavior from generating clouds of redundant 

network requests. For example, any object already on the “dirty” list will 

not be added again. Thus many changes to an object will still only result 

in one entry for that object. A dirty list is a simple implementation. A log 

of change records is another alternative.  

Eventually we need to send those requests to the data store so that 

they can be made available to the user. This is the save(), update() or 

flush()method on the cache. This tells the cache to send all pending 

requests to the data store and empty the dirty list or change log. The 

request results will arrive asynchronously and the listener mechanism 

will keep the presentation informed.  

For interactive purposes, the save() method should generally be called 

at the end of every input event. This will make certain that the cache 

and data store start working on bringing the data store in line with the 

user’s requests. Exceptions to the “every input event” policy would be 

mouse movements. It is probably not a good use of resources to force 

data store updates on every mouse movement. It is generally a better 

policy to let such intermediate changes accumulate in the cache. In such 

cases one or a few data objects are being modified repeatedly. If save() 

is called on mouseUp or some other terminating event, all of the 

changes accumulated by the mouse movements will get sent in a timely 

manner without too much resource expenditure.  

The invocation of save() can be a programming practice that is used 

throughout the application. The problem with this approach is that 

forgetting to call save() will leave the data store in an inconsistent state. 

In many cases this is resolved when a later event does call save() 

because the cache has not forgotten those changes. If some form of 

top-down event handling is being used, the top level event handler can 

take responsibility for calling save() after any of its descendants have 

processed the event. If top-down or object inheritance event handling is 



not available then the programming practice approach is the only 

choice. 
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