
Layout
Up to this point we have directly specified the position of various

graphical elements in a widget. This direct specification is easy to build

as a system but quite cumbersome to use in practice. Figure 11-1 shows

a window in Microsoft Word at a particular size. In figure 11-2 we see

the same window at a smaller size. The user has interactively changed

the size of the window. If the bar across the bottom had stayed at a

fixed location, we would not be able to see it because it would be

outside of the window. Instead, its location has changed to reflect the

new window size. It still naturally appears across the bottom of the

window. Similarly the close button (X) in the upper right has move to a

new location. With the narrower window the old location would have

been clipped away. If we want widgets to “stick to the boundary” we

need to do something other than pin them to a fixed location.

In figure 11-1 we also sty the “Styles” button group in the ribbon across

the top. However, in figure 11-2 that “Styles” group has changed a great

deal. Instead of the scrolling list of individual styles it has switched to

two buttons. What happened is that as widgets were being laid out,

there was no longer enough room for the scrolled list of styles and this

has been replaced by a more compact representation.

11-1 – Microsoft Word large window

11-2 – Microsoft Word small window

The problem is that window sizes are variable and the positions of

widgets within the available space must adapt to that variability. This is

the layout problem, which we will address in this chapter. There are a

variety of techniques which each have relative advantages and

disadvantages.

Window resizing is not the only cause for layout issues. Personal

computing devices have many different screen sizes, from small phones,

to large phones, to tablets, to laptops, to multi-screen desktop

workstations. We want to write applications that deal with all of these

effectively without having to write many different applications for each

situation. In portable devices this is further complicated by how the

device is held, either vertically (portrait) or horizontally (landscape). The

layout must dynamically adapt.

Data contents can also cause layout issues. If we are looking at a list of

things, we want that list to dynamically change as items are inserted,

deleted or reordered. The things we put in the list may not all be the

same size, but we want it to place items correctly. The menu bar and

the individual menus are examples of this situation. We just want them

to stack up correctly no matter what items have been added or

removed.

Styling changes may also cause layout problems. If, for example, we

change the font size for menu items they might all get taller and wider.

We want the menu to lay out correctly without requiring us to modify

menu button positions by hand. Similar things occur when we change

languages to internationalize our application. Changing the word “open”

in English to “geöffnet” in German will require a wider menu button and

may thus move other things around.

Another big factor in choosing a layout model is the design tools. Many

of the UI design problems are best handled visually. It is easier to see

and modify a layout/design than it is to encode the design, view the

results and then modify the code. However, some of these layout

models do not lend themselves well to visual manipulation.

Layout algorithm issues
The layout problem is generally cast as a problem of placing nested

rectangles. The size and placement of a parent rectangle is decided by

the user or the layout algorithm and then the children are arranged

within that fixed space. This proceeds recursively to whatever level is

necessary.

When a parent rectangle changes size or position, this is well known.

The parent rectangle executes the layout algorithm and the children are

recursively resized and repositioned. However, sometimes it is the

children that cause the layout issue. The label on a menu item might get

bigger or smaller which necessitates relayout. A list might get longer. An

item might be removed. In such cases the toolkit will provide an

invalidate(), layout() or repack() method. This tells an item that its size

needs have changed. This is propagated to the parent rectangle and so

on up the tree until the top level is reached and the layout algorithm is

reexecuted.

Fixed layout
The simplest algorithm is the fixed layout. Every rectangle is given a

fixed value for left, top, width and height. If everything stayed constant

this algorithm works great. This is the algorithm that most visual

designers prefer. It is also the easiest to construct interactive design

tools. The positioning of a widget is just a matter of dragging and

resizing rectangles. Even nested structures are easy to draw. In most

systems the positions of the rectangles are defined relative to the

position of their parent rectangle. This simplifies positioning groups of

widgets as a unit.

A key reason why visual designers like fixed layout is the simplicity of

the model and the control it gives them. It also conforms to the design

skills that they acquired in poster and page design. It allows them to

carefully and iteratively enhance a design with the knowledge that

everything will appear as they have designed it. However, this is not

interactive reality. People resize, move, interact and change things. We

need layout models that can adapt to this dynamic reality.

Edge-Anchored
In figures 11-1 and 11-2 we see two kinds of layout going on. The first

are the items that stick closely to their adjacent edge. Many applications

use the technique of decorating the borders with buttons, controls and

information. The second layout is the heart of the application. In figure

11-1 this is the document being edited. This widget generally occupies

the center of the area and grows as large as the parent window will

allow. In Visual Studio, Microsoft introduced the edge-anchored layout

that slightly extends the fixed layout to accommodate the kinds of

layout problems we have just described.

In edge-anchored layouts, the designer positions items with a drawing

tool just as with fixed layouts. In addition to the position of the

rectangles, each rectangle gets four anchor attributes. These are

represented in an anchor control for which examples are shown in

figure 11-3.

11-3 – Edge-anchor controls

The anchor control is operated by clicking on the four anchor bars. This

will toggle a bar between anchored (dark) and unanchored (light).

Anchored means that the corresponding edge of the rectangle is a fixed

distance from the corresponding edge of its parent. The distance is

determined by the designer when the rectangle is interactively placed in

the design. The design flow is to draw widget rectangles wherever they

are to be placed and then set the anchor control to manage their

position when layout changes.

Control “a” would be the setting for the main document area in figure

11-1. Each of edges of this main area is a fixed distance from the

window border. Whenever the window is resized this area takes a

position just inside using the offsets specified when the area’s rectangle

was placed. The control “b” would be used for the scrollbar on the right

side of figure 11-1. The top and bottom of the scrollbar are a fixed

distance from the top and bottom of the containing window. The right

edge of the scrollbar is tied directly to the right edge of the containing

window. There is no anchor for the left edge in control “b”. In this case

the width of the rectangle as it was drawn is used to place the left edge.

So one anchor means to fix that edge and then use the width.

Control “c” is the same case as control “b” only flipped 90 degrees. This

would be used for the ruler bar just above the document area in figure

11-1. It is tacked to the left and right edges and will grow or shrink with

the window’s width and then is stuck to the top of the window with a

constant height.

Control “d” would be the case for the widget in the lower right of figure

11-1 that contains the text “Page: 1 of 1”. This would have a fixed width

and height and would be stuck to the bottom and left of the parent

rectangle. This would also be the case for the widget that says

“Words:16”. The difference is that the fixed distance from the left edge

is larger to account for the other widget. If both edges are unanchored

then the rectangle has a constant width or height and floats

proportionally between the edges based on where it was drawn.

The algorithm for this layout technique is shown in figure 11-4.

public class Widget

{ Rect bounds;

 int left,top, right, bottom;

 int parentDrawWidth, parentDrawHeight;

 boolean anchorLeft, anchorTop,

 anchorRight, anchorBottom;

 public void doLayout(Rect newBounds)

 { bounds = newBounds;

 foreach C in children

 { Rect cb = new Rect();

 if (C.anchorLeft)

 { cb.left=newBounds.left+C.left;

 if (C.anchorRight)

 { cb.right=newBounds.right-C.right; }

 else

 { cb.right=cb.left+(C.right-C.left); }

 }

 else if (C.anchorRight)

 { cb.right=newBounds.right-C.right;

 cb.left=cb.right-(C.right-C.left);

 }

 else // no horizontal anchors

 { cb.left=C.left*

 (newBounds.width/parentDrawWidth);

 cb.right=cb.left+C.width;

 }

 do the same in Y . . .

 C.doLayout(cb);

 }

 }

}

11-4 – Edge-anchored layout algorithm

Proportional
Another layout technique that adapts to window size and is relatively

simple is the proportional technique. As with the other techniques the

vertical and horizontal layouts are independent of each other and use

the same algorithms. We will demonstrate the technique for the

horizontal case.

In figure 11-5 we see a widget rectangle embedded in its parent

rectangle. The location of the widget is determined by any two of three

possible values. When specifying these values, we can either supply an

integer pixel value or we can specify a fraction of the parent’s width,

such as 40%. By specifying a proportional value, the width of the parent

determines all or part of the horizontal layout.

11-5 – Horizontal position values

For example in 11-6 might be specified with A being 10 pixels from the

left and 48% of the parent width. Widget B would be 10 pixels from the

right and also 48% of the parent width. As the parent gets bigger and

smaller the two widgets stay stuck to their respective edges and get

wider or narrower. It is also possible to use centerLeftDistance and

centerRightDistance as additional possibilities. In conjunction with the

width these can place a widget relative to its center.

11-6 – Proportional sizes

There are two advantages to this layout technique. The first is that it is

easy to implement. Once the parent’s dimensions are known it is trivial

to calculate the child’s position. The second is that it is easy to draw in

an interactive design tool. For example we could draw the layout in

figure 11-6 and then specify that the widths are proportional rather

than fixed. Based on the drawing, the design application can easily

figure out the proportion percentage. One can also use the guides

shown in figure 11-7. Any edge that falls between a guide and the edge

of the parent is fixed at its drawn distance from the parent. Any edge

that is drawn between the guides is place proportionally.

11-7 – Drawing guides for proportionality

In figure 11-7 widget A has its top, left and bottom edges fixed to the

parent edges with its right edge floating about 48% of the way between

across. Widget B has its top and right fixed with its left and bottom

edges floating proportionally. The advantage of drawing with the guides

is that the common and natural thing happens just from drawing the

widget placement. The guides can also be used to set default

proportionality values with the designer free to change the defaults

when they desire. The guides in figure 11-7 can also be used to set the

edge-anchors shown in 11-3.

The biggest disadvantage of the proportional system is that it does not

take into account the space needs of the various child widgets. When

labels or languages change, space needs change and the proportional

system will not adapt to those changes.

Intrinsic size
All of the layout techniques we have discussed so far have only

considered the size of the parent rectangle. In many cases we need to

consider the size needs of the child widgets. Figure 11-8 shows a menu

bar. Note that the widths of the items are based on the amount of text

in the label. Menu items and lists of items frequently are sized by the

number and space needs of the individual items.

11-8 – Menu bar layout

This particular layout algorithm is called the intrinsic size algorithm

because it is based on the size needs of the individual children. The

most common way to compose such layouts is using a stack, either

vertical or horizontal. The menu bar in figure 11-8 is a horizontal stack.

For this to work each widget must implement the Layout interface

shown in figure 11-9.

interface Layout

{ int desiredWidth();

 int desiredHeight();

 void setBounds(int left, top, right, bottom);

}

11-9 – Intrinsic size layout

The stacks are just Groups that have additional code to perform layout

function on their contents. So an HStack (horizontal stack) group would

report its desiredWidth() to be the sum of all of the desiredWidths of its

children. It would report its desiredHeight() to be the maximum of the

desiredHeights of its children. A vertical stack would perform similarly

with width and height reversed. When the setBounds method is called

on an HStack it will arrange its children in order according to their

desired width. The algorithm is in figure 11-10.

class HStack implements Layout

{

 void setBounds(int left,top,right,bottom);

 { int wLeft=left;

 for(int i=0;i<contents.length;i++)

 { Layout w = contents[i];

 int width = w.desiredWidth();

 w.setBounds(wLeft,top,wLeft+width,bottom);

 wLeft+=width;

 }

 }

}

11-10 – Horizontal layout

Each of the children widgets is given its desired width and they all share

the top and bottom of the HStack itself. It is possible that the bounds

did not contain enough space for all of the children. In such a case the

window for HStack is used to clip off extra children. We will see

mechanisms for dealing with this in later layout techniques.

Many times a simple vertical or horizontal stack is not enough. We

generally want more than just a row or column of things. One approach

is to create a vertical stack of horizontal stacks, as in figure 11-11.

11-11 – Vertical stack of horizontal stacks

As you can see, this is not very satisfactory. Nothing is lined up and it

looks rather ragged.

As an alternative we can use a grid layout to better organize the

contents. Each child is given a row and a column attribute that tells

where in the grid it should go. For example “Giraffe” goes in row 1,

column 1 and “Dog” goes in row 2, column 3. The code for the Grid

layout is shown in figure 11-12.

class Grid implements Layout

{ int colWidths[];

 int desiredWidth()

 { for (int i=0;i<contents.length;i++)

 { Layout w = contents[i];

 int c = w.getInt(“column”);

 int width = w.desiredWidth();

 if (colWidths[c]<width)

 colWidths[c]=width;

 }

 int dw=0;

 for (int col=0;col<colWidths.length;col++)

 dw+=colWidths[col];

 return dw;

 }

 int rowHeights[];

 int desiredHeight()

 { similar to desiredWidth() }

 void setBounds(int left,top,right,bottom)

 { int colRight[];

 int right=0;

 int colRight[0]=0;

 for (int i=1;i<colWidths.length;i++)

 { right+=colWidths[i-1];

 colRight[i]=right;

 }

 colLeft[colWidths.length]=left;

 . . . similar for rows . . .

 for (int c=0;c<contents.length;c++)

 { Layout w = contents[c];

 int row = w.getInt(“row”);

 int col = w.getInt(“column”);

 w.setBounds(colRight[col-1],rowBot[row-1],

 colRight[col],rowBot[row]);

 }

 }

}

11-12 – Grid layout algorithm

In the Grid technique each row’s height is the maximum of all elements

in that row and each column’s width is the maximum of all elements in

the column. Once the row and column widths are known we can easily

place each item in its correct cell location. The result is shown in figure

11-13.

11-13 – Grid layout

Box model

The remaining issue is how large the leaf items (buttons, icons, text

boxes, etc.) should be. One popular approach that is found in HTML/CSS

is the box model. The box model defines a series of widths as shown in

figure 11-14.

11-14 – Box model

The margin is the distance between the item and its adjacent item. This

is intended to separate items from each other. The border is the width

of the border if there is one. There can be a variety of borders drawn

but only the border width matters to the layout algorithm. The padding

is the distance between the content and the border. Each of these

widths (margin, border, padding) can be set to control how the content

will be positioned. In some systems like HTML/CSS the left, top, right

and bottom values for each of these widths can be set separately.

The computation of the size of a widget that uses the box model would

be the size of the content plus the sizes of the margin, border and

padding. For example, in the case of a button with a label, we would use

the font metrics information to compute the width and height of the

label string. The width of the widget would be the width of the label

string plus the widths of margin, border and padding on either side. A

similar approach can be taken with icons, text boxes and a variety of

other simple widgets.

Caching sizes

When using intrinsic size layouts, many times the layouts are composed

of stacks within stacks within stacks. A simple implementation would

call desiredWidth() recursively to get the width computed. The widths

of the children are then set which would cause any child groups to

compute their own layouts. These would recursively call their own

children’s desiredWidth() again. If there is a complex layout this

duplicate calling can be a problem. Therefore many widgets will save

their width information and not recursively call their children. The

problem here is if one of the child’s size needs were to change the saved

sizes would be wrong. Many layout systems have an update() method

that notifies a parent whenever a child’s size needs change so that the

parent or higher ancestor can recomputed the layout. On modern

machines, with faster than gigahertz processors the duplication of size

computation does not matter, but the layout system may still have

caching built in and attention to update() may be required.

Variable intrinsic size
The intrinsic size technique allows the layout to adapt to the needs of

the widgets it contains. If a language changes or any other information

in a widget needs more space that layout algorithm can adapt. The

proportional algorithm could adapt to the size of the parent window or

to various aspect ratios of mobile devices, but could not adapt to the

needs of widgets themselves. For example, the vertical scroll bar in

figures 11-1 and 11-2 needs to grow and shrink with the size of the

widget that contains it. The variable intrinsic size algorithm extends

intrinsic size so that it can adapt to the space available as well as to the

needs of the child widgets. This is the layout algorithm used by Java

Swing. It is also used for mathematical formulas in TeX and LaTeX.

Figure 11-15 shows the Layout interface updated to accommodate the

needs of variable intrinsic size. The big difference is that instead of a

single desired(width/height) we elicit three values of min, desired and

max. We will use these three values to create layouts that adapt to

available space.

interface Layout

{ int minWidth();

 int desiredWidth();

 int maxWidth();

 int minHeight();

 int desiredHeight();

 int maxHeight();

 void setBounds(int left, top, right, bottom);

}

11-15 – Variable intrinsic size layout

The min value is the absolute least size that a widget can use to function

properly. Any less and it just will not interact in any effective way. The

desired size is what a widget would like to have to function comfortably.

The max size is the most that the widget could possibly use to good

effect.

11-16 – Variable sized widgets

Figure 11-16 shows some example widgets that will illustrate variable

size needs. The button at the top does not vary much in its needs. It is

the size that it is. Its max and desired sizes would be the same. It is

making no requests to grow if possible. Perhaps the min size could be

smaller by reducing the padding and border widths. This would allow for

a little variation, but not much.

The document area has different needs. For its width, it might report a

minimum of 100 pixels. You can see the document, but it would not be

comfortable to work. Its desired width would be the width of the page.

That is what it really wants. It would probably report a maximum width

that was the same as its desired. Its height would be different. The

minimum height could be the height of 2 or 3 lines of text. That would

not be comfortable, but you could get work done. Its desired height

would be the height of a page or maybe ½ page. That would be

comfortable work. The maximum height would the height of all the

pages in the document. It could use all of that space to show the user

more of what is being written.

The scroll-bar would report a width where min, desired and max are the

same. It does not want to shrink or grow. For height it would report a

moderate min and desired with a very large max so that it could grow to

fill the space.

As with the intrinsic size algorithm, we generally compose groups of

widgets using vertical and horizontal stacks as well as grids. The

computation of min, desired and max for each of these is the same as

the desired computation for intrinsic size. The difference lies in the

actual setBounds() layout algorithm itself.

As with intrinsic size, the vertical and horizontal layouts are

independent of each other, but similar. For the algorithm discussion we

will only consider the HStack. The vertical and grid layouts are handled

similarly. For the HStack, every widget is given the top and bottom

values for the stack itself. For the horizontal layout we need to compute

the width for each child widget. Once we have the widths we can lay

them out the same as with the intrinsic size layout.

There are four cases to consider when performing variable intrinsic size

layout. They are:

1. There is less than the minimum width available.

2. There is at least the minimum available but less than desired.

3. There is at least the desired width available but less than the

maximum.

4. There is more than the maximum available.

Case 1 is easy. We give every child its minimum and let clipping deal

with the overflow. There is no good answer and shrinking everything

makes it uniformly bad.

In case 2 we want to give every widget its minimum and then give each

one as much of its remaining desired width as possible. This is

controlled by two formulas:

𝑟𝑎𝑡𝑖𝑜 =
𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑊𝑖𝑑𝑡ℎ − 𝑚𝑖𝑛𝑊𝑖𝑑𝑡ℎ

𝑑𝑒𝑠𝑖𝑟𝑒𝑑𝑊𝑖𝑑𝑡ℎ − 𝑚𝑖𝑛𝑊𝑖𝑑𝑡ℎ

𝑤𝑔𝑡𝑊𝑖𝑑𝑡ℎ = 𝑤𝑔𝑡𝑀𝑖𝑛 + 𝑟𝑎𝑡𝑖𝑜 ∗ (𝑤𝑔𝑡𝐷𝑒𝑠𝑖𝑟𝑒𝑑 − 𝑤𝑔𝑡𝑀𝑖𝑛)

The ratio computes how much of the difference between the desired

width and the min width is actually available. The wgtWidth computes

the width to be given to each widget based on its own difference

between desired and minimum.

In case 3 we do the same as case 2 except that we give every widget its

desired and then as much of its maximum as possible.

Case 4 can be handled in two ways. The first is to just give every widget

its maximum and leave the extra space unused. This assumes that the

widgets really cannot use the extra space beyond their max. The other

alternative is to apply case 3 and let the ratio grow beyond 1.0. This

proportionally gives more space to the widgets with large max. Either

strategy will be fine because the widgets are always getting at least as

much as they asked for.

Spacers and spreaders

There are two special widgets that can be used to augment the variable

intrinsic size layout. A spacer is a transparent widget that has the same

min, desired and max values. It is a rigid size and shape. Placing this in a

vertical or horizontal stack will create a visual gap between other

widgets. It can separate categories or just provide some openness to

the visual layout.

A spreader is also a transparent widget except that it has a fixed min

and desired with a very large max. It usually comes in vertical and

horizontal variants. For example a horizontal spreader would have a

fixed height of 1 some fixed min and desired width and then a large

maximum width. It would not expand at all vertically but would grab as

much space as it could horizontally. Figure 11-17 shows three examples

of how spreaders can be used.

11-17 – Use of spreaders to manage layout

Vertical expansion variation

There are many situations such as word-wrapping text or the flow

layout described below where it is desirable to first fix the width and

then ask for the widget’s height. For example, if a text field contains 300

words of text and is written in English, it would help to first tell it how

many pixels wide it can be. Once it knows its width, it can flow the

words and determine how much height it would like. This is widely used

for HTML text layouts. The change to the algorithm is small. We change

the Layout interface to that shown in figure 11-18.

interface Layout

{ int minWidth();

 int desiredWidth();

 int maxWidth();

 void setHorizontal(int left, right);

 int minHeight();

 int desiredHeight();

 int maxHeight();

 void setVertical(int top, bottom);

}

11-18 – Vertical expansion layout

In this variation the children are asked for their min, desired and max

widths, the horizontal layout is computed and each child is given its

horizontal layout using setHorizontal(). Now that each child knows its

horizontal space it can respond to calls for min, desired and max height

in a more appropriate way. Then setVertical() is called to complete the

layout.

Grid/gutter
All of the layout systems described above are based on pixels. However,

visual designers learned long ago that pixel-based widths and heights

are awkward to deal with and require too much detail on the part of the

designer. Visual designs such as poster or page layout are designed with

a grid. This is a different grid than that layout describe above. It is a

standardized set of places where things fit on a page. Magazine layouts

have well defined grids that establish the look of the magazine. There

are generally a few basic layouts into which writers and photographers

pour their content and a consistent look for the magazine is easily

achieved.

In paper page layout, grids are both vertical and horizontal. In web

pages and other uses where scrolling is possible it is common to only

establish a grid of columns with the content itself determining the

height of the columns. The width of a widget is defined not in pixels but

in the number of columns it will occupy.

A widely used grid system for web pages and other user interface

layouts is the 960 grid. It was originally established to be 960 pixels

across. This accounts for the many web pages that will not adapt to

smaller window sizes. Visual designers historically struggle with layouts

that change size. They brought their page design techniques with them

and created rigid layouts. We discuss a little later how to remedy this.

11-19 – Variations on 12 columns

The reason for 960 pixels is that it easily divides into 12 equal columns

of 80 pixels each. The reason for 12 columns is that it divides into many

different layouts, as shown in figure 11-19. It can be divided into two

halves of 6 columns each or into thirds of 4 columns or fourths of 3

columns each. More interesting layouts of 9 and 3 columns or 4 and 8

columns are easily laid out. The key advantage is that one quickly picks a

number of columns and everything else works out nicely.

In this system the width of a widget is specified in columns, which is

multiplied by 80 to get the total width of the widget. The column/grid

layout is used widely with the box model described earlier. By setting

the margin of the widgets to a uniform value, the gutter space between

columns is uniformly achieved. This rigid column model can be

improved by replacing 80 pixels with 80/960 or 8.333%. If the fixed

column widths are replaced by corresponding percentages, then the

widths of the columns will flex with changes in window size. If, as

discussed in the vertical expansion variation on variable intrinsic size,

the width is set before asking the widget how tall it wants to be, the

layout adapts vertically as well. This is the approach used by the

Bootstrap styling system. Designing layouts in columns and margins is

much easier than in pixels.

Flow
The flow layout is a larger scale version of what happens when a text

box uses word wrapping. If there are too many words to fit across a line

then words are moved to the next line so that the sentence still flows. A

similar thing can be done with widgets in rows of layout. At the top of

figure 11-20 is a set of widgets laid out in a row. If the parent width

shrinks for some reason, then widgets D,E and F can flow into a new

row.

11-20 – Flow layout

If the widths of the widgets were defined in columns rather than pixels,

as described above, then they will flow to form generally pleasing

alignments. For this to work, simple percentages for column widths will

not work because instead of flowing to a new row the columns will just

get thinner and thinner as the available width is reduced. A solution to

this is to ask for the minimum widths of all of the child widgets. The

maximum of this can be used to set the minimum column width. This

guarantees that every widget will get at least its minimum width. By not

allowing columns to go below a minimum width, widgets will flow to a

new row rather than get smaller. For larger widths the columns still flex

with any additional width.

Conditional
In some cases simply manipulating the sizes and flow of widgets will not

adequately account for changes in the available space. Figure 11-21

shows the Microsoft Word button ribbon at three different widths.

11-21 – Adapting layouts

Note that the “Styles” group of widgets does not just change width it

completely changes its presentation. At the first step it collapses the list

of styles into a drop-down button called “Quick Styles” and as the space

becomes even more limited the entire “Styles” group becomes a single

drop-down button. Note also that the “Paragraph” group is not

changing. The “Styles” group has reported a minimum width that is

consistent with the single drop-down button. This allows other widgets

or groups of widgets to use the space.

One way we could represent this is with a CondLayout object as shown

in figure 11-22. The CondLayout reports its minimum width as 100

because that is the smallest possibility in its list of layouts. It reports its

desired width as 200 as specified by the attribute and it computes its

maximum from the maximum layout of the largest layout given.

When CondLayout receives its width setting it will pick the largest of its

layouts that will fit within the available space. Each layout is completely

different. This allows for radical changes in the offered presentation as

the available space changes.

CondLayout{ layouts: [

 { minWidth:300,

 [widgets for the large layout] },

 { minWidth:200,

 [widgets for the medium size layout] },

 { minWidth: 100,

 [widgets for the smallest layout] }

], desiredWidth:200

}

11-22 – Conditional Layout

This kind of conditional layout is supported in HTML5/CSS using the

@media query. Widths are specified in HTML5 as attributes that can be

set using CSS (Cascading Style Sheets). Style specifications are processed

from beginning to end with latter definitions overriding earlier

definitions. The @media query has a set of possible rules that can test a

variety of situations, such as page width, presentation on a projector

and several other things. If the test associated with an @media query is

true then all of the CSS definitions inside of that block are executed. If it

is false then they are skipped. This is widely used in a fashion similar to

figure 11-22 to change the styling of a page depending upon the

available space.

Summary
In this chapter we have discussed a variety of layout mechanisms. We

started with the simple fixed layout that is easy to define, but does not

flex with the available space. The edge-anchored layout is an

improvement on the fixed layout in that it varies the edges to which

widgets are fixed so that they can be fixed to the right or bottom

instead of just left and top. The proportional layout simply gives each

widget a fraction of the available space.

None of the above account for the actual need of the various widgets to

display their contents. The intrinsic size layout asks each child how big

they want to be and then gives them that space. This allows for dynamic

adjustment when a label or icon is given a different size. The variable

intrinsic sized layout allows widgets to specify their flexibility by

reporting their minimum, desired and maximum sizes. This provides a

more adaptive layout.

Grid systems, taken from visual design, assert a more global layout of a

display so that everything aligns well and has good whitespace

structure. This is made more flexibly by specifying column widths as

percentages rather than fixed widths. The flow layout allows widgets to

flow to additional rows if the space becomes too small and conditional

layouts allow for completely different widget arrangements to be used

as the available size changes.

Exercises

