
Input Handling 
Figure 8-1 shows our basic Model-View-Controller architecture. The 

user perceives what is on the screen and in response to her own desires 

and what she perceives, she expresses herself to our interactive 

application. In modern user interface architectures, these expressions 

occur as input events. Input events are received by the controller and 

then, with information from the presentation tree (if there is one) and 

the view, the controller translates sequences of input events into 

changes to the model. When the model is changed, all views that are 

listening to that model are notified (as in chapter 7). The views update 

themselves (as in chapter 6) and inform the windowing system using 

damage(). The windowing system will call paint() on any damaged 

regions to update the screen. The user then perceives the changes and 

the process repeats. In an interactive program, the main program 

merely sets up the user interface. The real control of flow resides in the 

head of the user. This lack of direct, programmatic control is 

disconcerting for some programmers.  

 

8-1 – Model-View-Controller 

In this chapter we are going to focus on the role of the controller. When 

an input event, such as a mouse click is received by the controller, it 

really does not have any meaning by itself. What matters is what part of 

the presentation was clicked. That is where the meaning is established 



by the user. The controller will consult the presentation tree, if there is 

one, and the view. It will pass in the location of the event and receive 

back the essential geometry. The essential geometry is basically “what 

was clicked?” For example the scroll-bar in figure 8-2 has 5 regions. The 

action on the model depends on which region contains the mouse 

location. Those regions are the essential geometry of the scroll-bar. 

Once the controller knows the region that contains the mouse location, 

the controller problem is quite easy.  

 

8-2 – Essential Geometry of a Scroll-bar 

In the case of our scroll-bar the essential geometry is based on 

rectangles. Testing whether a location is inside of a rectangle consists of 

4 if statements. Such simple geometry is widely used but not always 

adequate. In chapter xxx we will look at more complex geometry so that 

we can solve a greater range of interactive techniques. For the purpose 

of this chapter, rectangle geometry is sufficient. 

As shown in figure 8-3 most graphical applications are constructed 

around a window tree. Each window is a rectangular region that is self-

contained. Generally the Graphics object is configured to clip away any 

drawing that is attempted outside of the window’s rectangular 

boundaries. We will call each such self-contained window a Widget (as 

discussed in chapter 7). A widget encapsulates a view and a controller 



and in simple cases, such as the scroll bar of figure 8-2, the model is also 

included in the widget.  

      

8-3 Calculator with window tree 

In this chapter we will first review the kinds of input events that we 

might receive. We then look at the event dispatch algorithm that takes 

an input event from the operating system and decides which widget 

should receive that event. Once a widget has been selected to receive 

the event, we must invoke some of the application program’s code so 

that event can be handled. There are a variety of mechanisms for 

binding events to code. 

In many systems the event-code binding is the limit of the architecture. 

It is up to the application programmer to write whatever event handling 

code they desire. However, in some systems there are default 

controllers that perform interactive operations directly on the 

presentation tree. In such architectures the input events are hidden 

from the programmer. Instead what are received are change descriptors 

on the presentation trees. We will discuss how to upgrade our model-

to-view mapping techniques so that they can also perform view-to-

model mappings in a consistent fashion. Lastly we will discuss how 

widgets can themselves generate events that are consumed by other, 

higher-level widgets to perform more complex behaviors. 



Input events 
There are four classes of input events that are of interest to us when 

building our user interface. The mouse events are the most common 

and are obviously generated when we move the mouse and press its 

buttons. Touch events come from touch screens, like those found on 

tablets and smart phones. If there is one touch it is generally treated 

like a mouse event, although there are differences. Touch gets more 

complicated when sensing multiple fingers. Keyboard events are special 

because they do not have any spatial location. Lastly there are widget 

events that are generated by widgets in response to patterns of simpler 

events.  

Mouse events 

Mouse events are characterized by the X,Y location of the mouse and 

the pattern of buttons on the mouse that are currently pressed. The 

most common events are MouseDown (when a mouse button is 

pressed), MouseUp (when a mouse button is released) and MouseMove 

(when the mouse changes location). A mouse event is generally 

accompanied by an event object that contains the X,Y location as well as 

flags indicating which buttons on the mouse are pressed at the time of 

the event. In addition, flags for modifier keys such as shift, control, alt or 

command keys are also included. In some applications, the meaning of 

the event is altered by whether one of these buttons is pressed. Some 

systems offer a MouseClick event which is MouseDown followed rapidly 

by MouseUp with few MouseMove events in between. This behavior is 

so very common that it is included by many systems even though it can 

be built from the three major mouse events. 

In addition to the three major events, many widgets also receive the 

MouseEnter and MouseExit events. These occur when the mouse enters 

the widget’s window and when the mouse leaves. This allows for 

highlighting and responsive behaviors that are independent of the user 

actually offering input for changing the model. 



Touch events 

The first major difference between touch events and mouse events is 

that with most touch screens, there is no hover. With a mouse, the 

MouseMove event is reported whether any buttons are pressed or not. 

With touch events, we generally only know the location when the finger 

is actually pressing on the screen. This makes button hover or other 

responses impossible because no events are being received. The 

Samsung phones and tablets do sense proximity to the screen and can 

use that for hovering, but it has not been widely adopted by application 

developers. 

In general, an application that responds to the three major mouse 

events can work effectively without considering touch. The touch events 

are simply mapped to the same methods as the mouse events and the 

application continues to work. The biggest difference is in the use of 

multi-touch. Smartphone techniques such as pinch/spread to control 

zooming require the sensing of two fingers at least. This cannot be 

handled as simulated mouse events. 

Many touch event systems talk about Pointers where a pointer is any 

mouse, finger, stylus or other input modality that includes a screen 

location. As with mouse events there are the PointerPressed, 

PointerMoved and PointerReleased events. The difference is that the 

event object contains an array of pointers (X,Y positions) rather than a 

single location.  



 

8-4 – Multitouch example 

In figure 8-4 we see two fingers being used for a gesture. The event 

stream that we might see is in figure 8-5. 

PointerPressed (thumb down, single pointer, ID=1) 

PointerMoved (thumb wiggles a little, single pointer) 

PointerPressed (finger down, two pointers for thumb and  

  finger, finger ID=2) 

PointerMoved (thumb and finger moves with the gesture,  

  two pointers are returned each time) 

PointerReleased (thumb[ID=1] comes up, single pointer in  

  array, finger ID=2) 

PointerReleased (finger[ID=2] comes up, no pointers) 

 

8-5 – Two finger gesture event trace 

Our first PointerPressed event comes when the thumb goes down. Our 

code has no idea it is the thumb, only that a touch was initiated. The 

pointer array contains only one location (the thumb) and the thumb was 

assigned a unique ID (in this case a 1). Android assigns IDs to pointers, 

other systems might not. The purpose of the ID is to track particular 

pointers as they appear and disappear. When the second 

PointerPressed event occurs, there are now two pointers in the array 

and the finger has been assigned ID=2. Our gesture may have selected a 

center for rotation on the first pointer down. We want to track that 

pointer to make sure we keep the center of rotation on that point. After 

the movements of the gesture, the thumb comes up first. There is now 



only one pointer in the array (at index 0) but that pointer still retains the 

ID=2.  

Many systems add events for pointers entering and exiting a widget. 

Android also provides two variants for PointerPressed and 

PointerReleased. In Android there is ACTION_DOWN when the first 

pointer goes down and ACTION_POINTER_DOWN when any subsequent 

pointers go down. This simplifies knowing when a gesture starts. 

Android also has ACTION_POINTER_UP for when any pointer other than 

the last one goes up, and ACTION_UP when the last pointer goes up and 

the gesture is done.   

Various systems have subtle differences in their handling of multitouch 

but they all follow the basic ideas presented here. This allows us to 

write applications where multiple touches, pointers, stylus or mice are 

possible.  

Keyboard events 

As we will see in the next section, keyboard events are special because 

they do not carry any location with them. We will visit this problem 

again in the section on event dispatching. In most cases our application 

responds to a simple KeyEvent. Accompanying this event is a character. 

Generally modifiers such as shift or control have already been 

considered and the KeyEvent produces the appropriate character. If a 

user enters a control-A, we would generally not key a KeyEvent for the 

control key. We would only get a KeyEvent on the “A” and the character 

we would receive would be a control-A because of the processing that 

occurred in the operating system. Most modern systems will return a 

Unicode character so that all issues of language and keyboard style have 

already been resolved before the input event is passed to the 

application. 

It is also possible to directly receive the KeyPress and KeyRelease 

events. These are the primitive events from the keyboard. This allows 

applications to have commands based on multiple keys being pressed at 

the same time. This is sometimes used in gaming but rarely in other 



applications. These events are accompanied by an indicator of the key 

being pressed. In many systems the actual array position of the key on 

the keyboard is returned, allowing the application to remap the 

keyboard’s meaning in some unique way. For the remainder of this text 

we will consider only the KeyEvent. 

Widget events 

One of the ways that widgets can be integrated into our user interface 

architecture is if they themselves generate events. For example a 

scrollbar might generate an event every time its value changes. There 

are a variety of primitive input events that can cause the scrollbar to 

change, but the rest of the application only cares about when the value 

of the scroll bar changes. Three scroll bars might be collected together 

for the red, green, and blue values of a color picker. Their scroll events 

might be received by the color picker which then generates “color 

changed” events. Again at the higher level, we do not care about the 

individual scroll events or about the mouse events. We only care about 

the change to the color. 

Event dispatching 
Event dispatching is the process of deciding which of the widgets in a 

window tree should receive a given event. There are three basic 

mechanisms for doing this: top-down, bottom-up and focused. Figure 8-

6 shows our familiar calculator window tree.  



      

8-6 Calculator with window tree 

In a top-down strategy the event is passed to the Root Window and it 

does whatever it wants with the event. This is simple to implement but 

if a MouseClick event had occurred over the number 7, the root window 

is probably not the right place to handle it.  

In a bottom-up dispatch algorithm the front-most window that is lowest 

in the tree receives the event. In essence the algorithm is as shown in 

figure 8-7. By considering widgets in front to back order, the front-most 

widget is always found first. By considering the children before handling 

the event itself, a bottom-up strategy is achieved. 



boolean Widget.dispatchEvent(Event E) 

{  

 foreach ( child C in front to back order) 

 { if (C.bounds.contains(E.mousePoint)) 

  {  if (C.dispatchEvent(E))  

    return true; 

   else 

    break; 

  } 

 } 

 if (this widget can handle the event ) 

 { handle the event 

  return true; 

 } 

 else return false; 

} 

8-7 – bottom-up event dispatching 

The code in figure 8-7 merely sends the event to the lowest appropriate 

widget. In some cases, however, the lowest widget may not want the 

event. If a widget does not want the event it returns false and widgets 

farther up the tree can handle it. This is where the “up” part of bottom-

up comes in. 

Since the advent of object-oriented programming we can make the 

code in figure 8-7 the default implementation of dispatchEvent(). Any 

subclass can override the method if they want. The result is a mostly 

bottom-up dispatch algorithm that can be customized for special 

purposes.  

Event focus 

KeyEvents have no mouse location to use in deciding where the event 

should be dispatched. For this situation we have the concept of key 

focus. The key focus is simply a global variable in the root window that 

points at the widget that should receive the KeyEvents. A widget can call 

a method to request the key focus. For example the calculator’s value 

type-in window would automatically request key focus so that it would 

receive all of the typed characters. When filling in a form like that in 

figure 8-8, each text box would request key focus whenever the mouse 

selects that widget. 



 

8-8 – Form with text-box widgets 

In figure 8-8 we might select the first name text box and have it request 

the key focus. However, when we are through with the first name we 

would enter tab or return and want the key focus to automatically move 

to the next text box. Various widget systems define a tab order. When a 

widget releases the focus (for example when it receives a tab key), the 

key focus is given to the next widget in the tab order. There are various 

ways that tab order is defined in systems. They are all quite simple to 

figure out. 

Also, when a text box loses focus it wants to remove the insertion 

indicator and other visual indications that it is active. For this the special 

event for LostFocus is defined. Whenever the focus is taken away and 

given to another widget, this event is sent to the widget that previously 

had the focus. Just to show that programmers have a warped sense of 

humor, in many systems the LostFocus event is called Blur. 

There are also cases where we need to focus the mouse rather than 

dispatching mouse events to the widget indicated by the mouse 

location. For example, in figure 8-9 we show the path of the mouse 

while trying to scroll to the left. Because the scroll-bar is skinny it is easy 



to drift outside of the widget’s boundaries. The solution is to request 

the mouse focus when the MouseDown event first occurs in the slider. 

We release the mouse focus on MouseUp. Holding the mouse focus 

means that all mouse events will be sent to the widget regardless of 

which widget’s bounds contains the mouse location. In many systems a 

widget automatically receives mouse focus on MouseDown and it is 

automatically released on MouseUp. Such dragging operations are by 

far the most common case and this automatic mouse focus mechanism 

relieves the programmer from worrying about the focus. Another 

example requiring mouse focus would be digitally painting near the 

edge of a window. We want to protect the user from the consequences 

of accidentally slipping outside of the window when working at the 

edge. 

 

8-9 – Mouse focus 

Event-code binding 
The various techniques for binding an event to a particular piece of code 

follow a similar structure to that described for listeners in chapter 7. The 

big difference comes in the various types of events that must be 

handled. In our model change listening, the key piece of information 

was that the model changed. With interactive inputs there are the 

mouse events, touch events and the others. When an input event 

occurs we need three pieces of information: the code to call, the display 

object effected by the event, and application data associated with that 

object. In many systems we rely upon the display object to contain a 

reference to the application data.  



 

8-10 – Event tables 

Event tables 

One of the earliest techniques was event tables, in GIGO[xx]. Every 

input event was given an integer constant and every window had an 

array of function pointers, as in figure 8-10. When an event was 

received, the event dispatch algorithm would identify the appropriate 

window and then the integer event code was used as a subscript into 

the event table to extract a function address. This function was then 

called with the window and event record as its parameters. An 

application data pointer was stored with the window. In Microsoft 

Windows this mechanism is even more primitive. Instead of a table of 

event functions for each type of event, each window has a pointer to a 

function that handles all events for that window. It is up to the 

“WindowProc” to decide what to do with each event.  

Event tables have the advantage that they are very easy to implement 

and every efficient. The downside is that because we are dealing with 

raw function addresses, there is a large opportunity for mistakes that 

can be difficult to debug. There is also a problem with interface design 

environments. Function addresses are not known until run-time which 



makes it impossible for the design tool to specify the function to be 

called. 

Object-oriented 

The Smalltalk environment[xx] pioneered the use of object-oriented 

programming for input event handling. In this style there is a superclass 

or an interface that defines a method for each event. Figure 8-11 shows 

such a Widget class. 

class Widget 

{ void mouseDown(Window wn, Event evt) 

 { . . . . . } 

 void mouseMove(Window wn, Event evt) 

 { . . . . . } 

 void mouseUp(Window wn, Event evt) 

 { . . . . . } 

 void keyEvent(Window wn, Event evt) 

 { . . . . . } 

 void paint(Graphics g) 

 { . . . . . } 

} 

8-11 – Object-oriented event handling 

In this approach, every window has a pointer to an object that is a 

subclass of Widget. When a particular event is dispatched to a particular 

window, the event dispatch code grabs the Widget object from the 

window and calls the appropriate method. Inside of object-oriented 

languages such as C++, Java or C# there is actually a table of procedure 

addresses called the virtual table. In essence the object-oriented style 

repeats the event-table approach with the compiler managing the 

tables and ensuring their correctness. 

Listeners 

The object-oriented approach fails in two ways. The first is when 

Microsoft Windows defined thousands of different events for all parts 

of the operating system and pushed them through the same event-

handler pipe. In this case the virtual table was thousands of bytes for 

every new class, most of which were not used for any given widget. The 

listener architecture where events were separated into meaningful 

groups or individual functions is far more effective than using one 



mechanism for all possible events.  The second problem was that 

forcing everything to be a subclass of some single class cause code 

architecture issues. Listeners resolve this problem as well. 

For a better understanding of listeners, please review the listener 

section in chapter 7. This describes the various forms of listener 

including delegates, function closures and parsed code strings.  

What is common in many systems is to assign functions to particular 

attributes of an object. For example, we can assign a function to the 

“onClick” attribute of a line. Whenever the user clicks on that line, the 

function is called. This is very common in web browsers. Each input 

event corresponds to a different attribute name. This is also simple, but 

only allows for a single target for the event. 

Presentation tree changes 
An alternative approach to input handling is to make the objects in the 

presentation tree interactive. The simplest form is selection. For 

example, we can give Ellipse a “selected” attribute that accepts a 

function value. When select is sent, the Ellipse object itself knows to 

handle input events and test them for selection of the ellipse. If the 

ellipse receives a mouseUp() event that is geometrically inside the 

ellipse, the Ellipse class will detect the relationship and call the function 

stored in the “selected” attribute.  A Group could also have a “selected” 

attribute. Whenever any of the contents of the Group are selected, the 

Group’s “selected” function will be called. This allows selection of larger 

objects than simple drawing primitives. The advantage of this 

architecture is that all of the geometry for selection is embedded in 

each of the drawing primitives. The application programmer does not 

need to consider geometry at all. The algorithms and math for such 

selections are discussed in chapter 9. 

In our example we used a “selected” attribute that contains a function. 

Any of our listener mechanisms could be used to accomplish this. We 

could also define a selected() method on every drawable object and 



allow the programmer to subclass those methods to add selection 

functionality to any particular part of the display tree. 

In another variation of this, any object that does not have a “selected” 

attribute but is interactively selected by the user can propagate its 

selectedness up the presentation tree to its parent and so forth. It can 

also add a path to the event as it propagates up the tree. This allows the 

actual processing of the selection to happen at any level of the tree. The 

path provides access back to the object that was originally selected by 

the user, if that is helpful.  

Control point interaction 

Selection is an interesting place to start but there are other forms of 

interaction that could be embedded into the presentation tree objects. 

Figure 8-12 shows a set of drawable objects that have control points 

indicated on them. Many interactions with geometry are expressed by 

the dragging of control points. When the mouse goes down over a 

control point, the dragging process begins and as the mouse moves the 

control point is moved until the mouse is released. 

 

8-12 – Control points 

If we want our graphical objects to provide such functionality they need 

only provide two methods: getControls() and changeControl(index,x,y). 

When an object is first selected one can call getControls() to have the 



object return an array of points, one for each control point. For 

example, the line would return its two end points. The rectangle would 

return its four corners. Other software could display the control points 

and process the selection and dragging of the control points. Every time 

a control point is moved to a new location it would call changeControl() 

on the original object and tell it which control point should be moved 

and its new location. Adding the additional method move(dx,dy) to 

objects would allow them to be dragged around the screen.  

The concept of dragging objects and control points can be extended to 

groups. Figure 8-13 shows a group of drawable objects that is 

surrounded by 9 control points. The control points on the corners and 

sides control scaling of all objects in the group and the control point at 

the top controls rotation around the center.  

 

8-13 – Group controls 

So we can put these all together to form a basic interaction mechanism 

for a presentation tree. So for every drawable object in our presentation 

tree, we expect the following methods: 

Path selected(x,y) if the point (x,y) will select this object then return 

this object’s path from its parent.  



Controls getControls() returns an array of control points that can 

manipulate this object. 

void changeControl(index, x, y) will change the control point 

indicated by index to the new x,y value. 

void move(dx, dy) will move the object from its current position by 

dx,dy 

Let us also assume that Group’s selected() method will call selected on 

its children in front to back order. If any of the children are selected, the 

Group will add its own index onto the front of the path. This will build 

up a path of indices that leads back to the originally selected item. 

Based on this capability in all of our drawable objects in our 

presentation tree we can create a subclass of Group called Interactor. 

What Interactor does is accept input events as they propagate down the 

tree and use the selected() method on its children to see if any of the 

children have been selected. If one has been selected, Interactor uses 

the returned path to find that object and to ask for its control points. 

The Interactor can then draw those control points after the contents 

have been drawn. This puts the control points in front of everything 

else.  

The Interactor can now use the mouse events it receives to select and 

drag control points. It changes selected objects using their 

changeControl() method. As presentation objects are changed, they 

cause the screen to be updated and redrawn appropriately. We might 

alter the behavior of Interactor by putting a “controls:true” attribute on 

some presentation objects. Interactor would only display control points 

and allow interaction with objects whose controls attribute was true. 

Interactor could also look for restrictions such as 

“controlMode:”vertical””. If Interactor found this it would only allow 

changes in Y for any movement.  

The nice thing about this architecture is that each drawable object 

manages its own geometry, but the Interactor object manages the full 



interaction. Interactor can define for as many different attributes of its 

own on objects as it wants, because all objects can have an arbitrary 

number of attributes, even if they do not know what most of them 

mean.  

Presentation mapping 

The above discussion showed how we can write objects like Interactor 

that can provide rich interaction with a variety of presentation objects. 

The problem is that such interaction does not change the model. We 

need a mechanism for propagating presentation changes back to model 

changes. For this we revisit the mapping functions of chapter 6. One of 

our examples from chapter 6 was a linear map governed by the 

equation: 

       

         
 

       

         
 

This time we want to solve for Mv because we know the presentation 

information from our user’s interactions, but we want the new model 

value. The resulting equation is: 

   (       )  
         

         
      

We can now augment our Linear class from figure 6-25 to the code in 

figure 8-14. 



public class Linear extends Map 

{ SV presentPath; 

 SV modelPath; 

 double modelMin; 

 double modelMax; 

 double presentMin; 

 double presentMax; 

 public void fromModel(SV presentation, SV model) 

 { SV v = getPath(model,modelPath); 

  double mv = v.getDouble(); 

  double r = (presentMax-presentMin)/ 

   (modelMax-modelMin); 

  pv = (mv-modelMin)*r + presentMin; 

  setPath(presentation, presentPath, pv); 

 } 

 public void fromView(SV model, SV presentation) 

 { SV v = getPath(presentation, presentPath); 

  double pv = v.getDouble(); 

  double r = (modelMax-modelMin) / 

   (presentMax-presentMin); 

  mv = (pv-presentMin)*r + modelMin; 

  setPath(model,modelPath,mv); 

 } 

} 

8-14 – Linear Map 

We have added the fromView() method that will use the linear equation 

to map a presentation value to a model value. Now when Interactor or 

whatever other class we define allows a user to change the 

presentation, the Map subclasses can also convert back to the model. A 

single Map object defines the transformation in both directions. As 

discussed in chapter 6, there are many other Map objects that are 

possible than just Linear. 

Text 

Our control points discussion concerned itself only with geometry. We 

can also enable Text presentation objects to support editing. Instead of 

control points the selection would be a position within the string. Any 

object receiving keyEvents could change the selected Text object based 

upon its cursor location.  



Widget Encapsulation 
As with other software systems, user interface software also needs the 

ability to break down the design into manageable parts. We also have a 

need to develop reusable pieces that do not require new programming 

in each application. Reusable widget libraries not only simplify 

programming but also unify the look and feel of the user experience. If 

all buttons look and act the same, it is easier for the user to understand 

the behavior of the interface. The way to achieve such uniform behavior 

is to reuse widget implementations from a standard library. 

So far in this chapter we have discussed the basic mouse, touch and 

keyboard events. For purposes of encapsulation we need widgets to 

generate their own events. Take for example the scroll-bar in figure 8-

15. 

 

8-15 – Scroll-bar widget 

To implement this scroll-bar we need to process the various mouse 

events that will click and drag the components of this scroll-bar. We also 

need to consider all of the pieces of its geometry and presentation. 

However, for programmers using the scroll-bar, they do not want to see 

all of that.  

To use the scroll-bar we want to consider 4 things: 1) the scroll-bar’s 

model , 2)the geometric placement and sizing of the scroll-bar, 3) the 

styling (color, texture, shape), and 4) events generated by the scroll-bar. 

For an implementation we can create a class of object for our 

presentation tree called HScrollBar. HScrollBar is drawable and can 

handle input events. For its model, it has three attributes: max, min and 

value. The value is the current value of the scroll-bar and the primary 

part of its model.  For styling information such as color, texture, arrow 

shape, etc. we can add attributes to HScrollBar. In The HScrollBar 

implementation, any changes to these attributes will cause the scroll-



bar’s presentation tree to be changed or rebuilt to reflect the attribute 

specification. For other styling issues we will defer to a later chapter on 

styling.  

The widget needs to generate its own events. There are several ways 

that we can handle these events. The HScrollBar can consume all of the 

mouse events that are sent to it and then whenever the value attribute 

is changed it can send a notify() message to its parent, as in chapter 7. 

This would propagate up the presentation tree and eventually be 

handled by one of the higher nodes in the tree. The notify() message 

could be modified to accumulate the path to the widget that generated 

the event as well as the name of the event. This would simplify the 

parent’s process of identifying and correctly using the event. Mapping 

objects such as Linear (chapter 7) could be attached to the widget to 

map changes in value back to changes in the model. This allows 

programmers to ignore all of the geometry inside of the scroll-bar and 

focus only on its current value.  

Another alternative is for HScroll to generate its own events. This might 

be a simple “valueChanged” event that is generated whenever the value 

changes or it might be separate events for “stepUp”, “stepDown”, 

“pageUp”, “pageDown” and “scroll”. This is really a widget design 

choice. There is also the design question of whether “valueChanged” 

should be called on every event that changes the value or only on 

mouseUp. Some implementations provide two different events, one for 

continuous value changes and one for changes only at the end. The 

HScroll object itself would use one of the delegate, listener, or function 

models to register listeners for the event(s). All mouse events would be 

handled internal to HScroll with users of HScroll listening for the higher-

level events of scrolling.  

The separation of widget specification into model, geometry, styling and 

events can be applied to any number of interactive objects such as 

buttons, radio buttons, check boxes, text boxes, dials, knobs, sliders and 

others. The encapsulation makes them all reusable. However, for a 

particular widget toolkit it is recommended strongly that all widgets in 



the toolkit use similar geometry, styling and event handling techniques 

to simplify the programmer’s job in using them. 

Summary 
For interactive behavior to occur, our software must accept and process 

user input events. In most interactive situations, the location of where 

an event occurred is critical to understanding what an event means. For 

this we introduced the concept of essential geometry which translates 

an event location into a meaningful action. We discussed four major 

types of events: mouse events, touch events, keyboard events and 

widget events. Each of these has their own challenges in use. We also 

discussed the use of a window tree for deciding how location-based 

events (mouse and touch) can be dispatched. We discussed the two 

major algorithms of top-down and bottom-up event dispatch. We also 

discussed the need for an implementation of key and mouse focus in 

event dispatching. 

The binding of events to actual code to process those events has a 

variety of options. Primitive event tables, were translated into object-

oriented event handling. Listeners, delegates, function closures and 

parsable language strings were all presented as mechanisms for binding 

events to code. 

We then discussed how interaction can be attached directly to drawable 

objects themselves. This provided a variety of interactive opportunities 

with little programmer effort. The general notion of control point 

interaction was discussed, as well as constraints on such interactions. 

The use of mapping objects was extended to allow presentation 

changes to map back to model changes.  

Lastly we used the concept of widgets to encapsulate interaction so that 

the widget behavior as a whole could be used instead of dealing with 

the internal events and geometry. Widget specification was broken 

down into model, geometry, styling and event handling. 



Exercises 
 

 


